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ABSTRACT

This dissertation is devoted to the imaging aspect of

the problem of obtaining high resolution images of

practical radar targets with digital processing

techniques. The motion compensation aspect of the problem

is also briefly described. A multi-frequency stepped

(MES) radar is assumed and the Fourier transform

relationship between the data (dimensioned in aspect angle

land signal frequency) and the target reflectivity function

is derived in both 2-D and 3-D forms. Assuming that the

data is available for 3600 aspect angle and using wideband

radar, a coherent digital processing method is developed

which will give the best possible resolution. Such a

situation occurs when the target makes a complete turn.

It is found that for such an imaging system the resolution

is inversely proportional to the mean carrier frequency if

such frequency is laLge compared to the signal bandwidth.

In the case when the data is undersampled in range or

.aspect angle or both, a modified coherent digital signal

jprocessing technique is described that will get around

,such difficulty. It is found that the modified processing

method gives poorer resolution but is better than either



the mixed processing method or the incoherent processing I

method. The latter two processing techniques are also

described in this dissertation. Experimental results are

also presented and problems with real targets such as

shadowing, glint and scintillation are discussed.

In the 2-D case, the radar data are sampled in polar

coordinate format. The sampling requirements in this

sampling scheme are discussed in great detail. Results

from Doppler processing and Degrees of Freedom concepts

both show tnat polar coordinate sampling in the Fourier

domain is adequate if the inverse of the greatest sampling

interval (in either radial or cross-radial dimension) in

the Fourier domain covers the entire linear extent of

interest in the real domain. Analytical methods using

Poisson's summation formula show the same results in more

detail especially in predicting undersampling effects.

IThe results on polar coordinate sampling can be applied to I

lother systems in which polar format sampling is a natural

setting.
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Chapter 1

PREAMBLE

1.1 Background

This dissertation addresses the problem of obtaining

high resolution images of rotating objects utilizing radar

i signals. High resolution here refers to resolutions which

are a fraction of a wavelength.

The key idea behind the high resolution capability of

imaging radars is the ability to record not only the

magnitude of an echo but also its phase. In a broad

sense, radar receivers that can do this are called

coherent radar. The era of coherent radar was inaugurated

when stable oscillators became available. Once the phase

measuring capability of a radar receiver was realized, it

did not take long for Carl Wiley at the Goodyear Aerospace

Corporation to initiate the concept of the Synthetic

Aperture Radar in 1951 (31).

The Synthetic Aperture Radar (henceforth SAR) in the

"simplest case achieves high azimuth resolution by making

use of the linear motion of the antenna platform with



respect to the earth. The early radar imaging systems

were primarily terrain mapping systems. The radar

'platform was typically airborne. The actual physical

;antenna aperture was usually small. A bibliography

consisting of the articles [8,12,22,35] gives a good

review of SAR. The first practical SAR system was

demonstrated in 1957 by Cutrona et al. using an optical

processor. Since then, a wide range of coherent radar

imaging systems have been initiated and developed for many

diverse applications.

SAR can in general be classified into two groups

based on the geometry of the system. The first group

assumes that the target is stationary. This includes the

usual SAR modes which depend primarily on optical

scattering, namely strip mapping, Doppler Beam Sharpening

mapping, and Spotlight mapping (21,6]. Other imaging

systems in the group are based on different principles of

operation. In particular, there is Interferometer Radar

[16] for topographic mapping, Harmonic Radar (17] for

.in-foliage metallic targets, and Hologram Matrix Radar

[19] for ice thickness profile measurement. Members of

this group are typically characterized as terra.n mappers.

The second group of SAR types is one in which the

;target is presumed to move along a certain trajectory

_ _ _2
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'while the antenna(e) remains stationary. Inverse SAR is a

typical example. Other radar imaging systems in this

class exploit a mixture of techniques; namely, frequency

diversity (multiple frequency system), spatial diversity

(multistatic system), and polarization properties of radar

reflections. To analyze this type of SAR, a wide range of

scattering models including Rayleigh, physical optics and

Geometrical Theory of Diffraction (GTD) are used. Ormsby

iet al. [25] give a succinct overview of some of the

systems. Inverse SAR techniques can be found in Chapter 7

of [101 for airborne targets and in (391 for ships upon th

ocean. Strictly speaking, both groups utilize a similar

*,theory but because of the different applications and

.geometry, the resolution requirements, sampling rate,

!parameter sensitivity, target model and system geometry

;will vary. Radio astronomy is an exceptioi: because it

belongs to both groups.

Interest in SAR in this dissertation lies mainly on

the Inverse SAR. Such a system is also called a

'Range-Doppler Imaging Radar. If the phase differences

between the phase of the transmitted waveform and the

phase of the received echo of some fixed point of

reference on the target are compensated for, the moving

target will "appear as if it were static in translational

motion but rotating about the point of reference. Since

3



the gross overall range to the target does not contribute

to the imaging process, inverse SAR is essentially a Range

Doppler Imaging system of rotating objects. Except for

system geometry, this system is similar in principle to

the Spotlight mode SAR [6]. The problem of gross range

estimation and the phase compensation associated with it

is called motion compensation.

1.2. Problem Description

Consider a rigid body as shown in figure 1.1 rotating

with its axis normal to the paper. If the illuminating

radar is far from the target, then the lines of constant

range (x) and cross-range (y) are rectangular coordinates

on the target.

Consider a point reflector at (x,y) on the target.

The two way phase delay of an echo from this point can be

measured by a coherent radar as

41T
S= -- r(x,y)

where X is the wavelength of the radar signal and r(x,y)

is the antenna to the (x,y) point distance. r0 >>I x,

r >>jyj. Then

r(x,y) = (r 0 +x) 2 +y2

2
=Ix+r 01 +

4



Radar Y
antenna

r r(x, y) 
(X y)

""x

Figure 1.1. Measurement of echo phase from a rotating target.
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+ r0 +X+

Suppose rb is constant. Then the Doppler frequency of the

echo is

1 dý
2i dt

i% 2 Fdx y_.
=•dt r0 dt
2r x[ [ (1.2.1)

= 1 + r-• y

where w is the rotation rate in radians per second, so

'that x pcoswt, I psinwt for oW2 7.

Suppose over a small enough time interval, the target

rotation is small enough such that x does not change by

more than one range cell width. This means no range

migration. In this case the Doppler frequency of-the

reflected signal is proportional to the cross-range

distance y of the point reflector. Therefore, resolving

the Doppler frequencies of two point reflectors will mean

resolving them in cross-range.

In attempts to strike a better cross-range

resolution, there has been over the years a trend toward

processing SAR and Inverse SAR (ISAR) data over wider and

"6
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wider time (hence aspect angle) intervals. Over this time

Sinterval, the range coordinate x may migrate through one

or more range cells (called range walking). Also, the
2 X"constant" of proportionality T (l+-)win Eq. (1.2.1) may•0

not stay constant over the time interval (changing

Doppler), resulting in Doppler spread, which translates

into poorer cross-range resolution. The latter effect is

also called variable range-rate (page 14, [371).

Processing techniques which partially solve these

problems were suggested [7] but in 1974 it was realized

(371 that all these problems disappeared if the data were

regarded as samples collected over a polar coordinate

raster. This idea in principle allowed full Doppler

processing and hence full potential resolution. Optical

methods were used to show the principle that indeed by

physically rearrangincl ._the data on the photographic

surface of an optical filter in polar format, the

conventional problems of range walking, changing Doppler,

and higher order terms in the Taylor's series expansion of

r(x,y) disappeared altogether.

In practice, to make the principle work takes more

( considerations. For one thing, most radar objects that

are of interest are three dimensional in nature.

Therefore, point scatterers in the shadow region of the

7



object can get obscured. In othet words, some point

scatterers will not contribute to the signal return for

all aspect angles. This means that one will not be able

to fully utilize the data from all aspect angles and

therefore not be able to achieve the best resolution from

these point scatterers.

A similar problem that is different in origin is that

for practical radar objects, signal returns from point

scatterers are subject to a great deal of fluctuation,

both in amplitude and phase. This phenomenon can be due

to either the nature of the target itself or due to

atmospheric effects. The important point is that new the

original assumption that the target backscatter function

is constant with time can no longer hold. These questions

are dealt with in Chapters 2 and 7.

In the early years of SAR development, because of the

enormous storage and computational load required to

reconstruct SAR images, most operational SAR used optical

processors. It was not until about 1975 that serious work

on SAR digital processing appeared in the literature

((2]1,3]). The advent of CCD correlators (21 and new memory

technology (page 181, 161) make the real time SAR digital

processor a realizable entity. In fact, the first real

time SAR digital system was built into the NASA SEASAT



satellite and launched in early 1979. Therefore it is

Simportant that digital processing of ISAR data be studied

and well understood.

The main issue in this dissertation will be to study

digital reconstruction techniques with ISAR data to obtain

as good a resolution as possible. One possibility is to

collect and process the data over a wider time interval.

This invariably leads to the necessity of having to treat

the data as being sampled in polar format. The special

case in which the target data is collected over 3600

aspect angle is considered.

A question arises from the known fact that a

practical processor for such imaging systems has to be

digitally implemented (3]. Since data samples are

collected in discrete target aspect angle intervals and

only discrete range samples can be measured with a radar,

the effects of such discrete sampling must be studied

first. The important question that needs to be answered

is therefore how to determine the sampling requirement for

the polar coordioate sampling format. The answer to this

question has applications in Tomography, Radio astronomy,

and all other systems which collect data in polar format.

In practical ISAR systems, the gross range (r 0) of

the target is not constant. This will give rise to a

_[ 9



composite Doppler in the reflected signal. It is

therefore important to isolate the Doppler component due
dr 0

to -- and subtract it from the composite Doppler.

Moreover, since the reconstructed image is a projection of

the target onto a plane normal to the target rotation

vector, the direction of the rotation vector _ should be

known or estimated apriori so that the image can be scaled

correctly. For an arbitrary object flying an arbitrary

trajectory, W is time varying and difficult to predict.

1.3. Approach to the Problem and Thesis Outline

The radar data collecting system cascaded with a

signal processor are treated together as an imaging

system. A good idea of the resolution ptovided by the

signal processor can be obtained by first computing the

point spread function (PSO) of the imaging system. A

measure of resolution based on the PSF can be devined by

either the Rayleigh criterion or the half power width of

the PSF. The PSF and hence the resolution can-also be

derived from Doppler bandwidth concepts. These are done

in Chapter 3.

The polar coordinate sampling requirement issue is

dealt with first using the Degrees of Freedom (henceforth

DO?) concept [153, then with Doppler bandwidth concepts.



;These are studied in detail in Chapter 4. Unfortunately
these concepts only provide a method to evaluate the

sampling requirement of the system. It does not however,

indicate what happens in the event that the sampling

requirement(s) is not met. In Chapter 5, Poisson's

summation formula [27] is used to study the error incurred

in the discrete sampling in polar coordinates. The

analytic expressions derived for the sampling error can be

Sused to evaluate the consequences of undersampling. At

'the same time, Poisson's summation formula is also applied

Ito Tomographic systems. The resulting analytic

expre sions for the sampling error also allow one to

understand the effects of polar coordinate sampling in

these systems.

For reasons of available experimental data, a

Multiple Frequency Step (MFS) radar is described in

Chapter 2. The relation between the data and the target

reflectivity function c(x,y) is derived first for the two

dimensional case where (x,y) are the target coordin:-tes.

In this case the target rotation vector is always normal

;to the line-of-sight (LOS). The three dimensional

!relation between 0(i) and the data is also derived with i

being the target point vector relative to the rotation

kcenter. In this case the LOS is at an arbitrary angle

:relative to the rotation vector.



The analyses in the subsequent chapters are based on

!the MFS radar syNstem. Even then, unless otherwise stated

the actual analyses can be applied tootherhigh--resolution

;radar systems.

Digital implementation techniques of the target

recocnstruction problem are developed in Chapter 6 keeping

in mind the computational speed and storage restrictions.

'These techniques are applied to the experimental data in

Chapter 7.

An attempt will be made in ChapteL 8 to derive

analytically the various Doppler componcnts of an airborne

target flying an arbitrary trajectory. The time pattern

of these Doppler components is studied for a linear

trajectory and a circular trajectory. An understanding of

the time pattern of the various Doppler components is an

important step before the actual reconstruction techniques

can be pplied to realistic ISAR data.

Chapter 9 gives a summary of the results in all the

ptevious chapters.

_ 12



Chapter 2

RADAR SYSTEM AND DATA REPRESENTATION

2.1 Multi-Frequency Radar System

The radar transmits a sequence or burst of K pulses

starting at time ti. The subscript i corresponds to the

thi burst. The transmitted signal is

N-1
s~t) =E X(t-t)(2.1

i=O

where N -total number of bursts transmitted

ti =iT3

T =burst repetition period
3

x(t-t,) is the ith burst of pulses defined as

•: x(t) .Z xj (t-iT2 ),(• 2= (2.1.2)

x (t-jT2) is the jth pulse defined as
!! j(t) =Ba(t)cos(27rfjt+ýj

alt.. 1 if ct [OT1 (2.1.3)
,,< ,0 if Xt 10,T I

•)i :T =pulse repetition period in seconds
S2

•T1 =pulse width in seconds

f. =frequency of the jth pulse carrier

13



•j =arbitrary but constant phase in the jth pulse.

It is implicit in Eq. (2.1.1) that the bursts are repeated

continuously. For convenience of illustration, the bursts

are separated in time. This is depicted in Fig. 2.1.1,

with T3>>T 2. Time separation between bursts may or may

:not exist depending on the application and design. For

example, in designing a "track while scan radar," one may

'want to separate the bursts and do search scanning between

bursts.

-- Figure 2.1.2 is a functional block diagram of the MFS

radar system. It shows the implementation of a matched

filter composed of a reference signal generator, a mixer

(multiplier) and an integrator. The matched filter is

matched to a signal phase corresponding to the two-way

:propagation delay of a point at some arbitrary but fixed

range r0. With the return signal as input, the matched

:filter output will give a composite phase of all

scattering centers referenced to the point at range r0

From Eqs. (2.1.1) to (2.1.3) the transmitted signal

can be rewritten as
N-1 K-

s(t) = B 0 a(t-iT3-JT2)cos(2af,[t-iT3-jT2]+$ij)

0 j=0

where a(t)1l if tc[O,T 1 ], and where Oij is the

arbitrary phase associated with the jth pulse in the ith

burst. For simplicity, suppose there is only one point

14



T3
Transmitted siRnal format

S-q F-qF-i , ,- i
3  T3  3T3

X(t) Transmitted pulse train

Burst length = t 3

1 2 T2  3

jy(t) Received pulse tcain

2r

C

=0_' Mi~ F1 2 *._Fo t
2r2rr

T J2 -r 2T +1-r

In-phase pulse train

2r
C0

Zr Zr
C ~~2 C T2 -

Quadrature reference signal z'(t)- Hilberc trausform of z(t).

Complex reference signal R(t)m z(t) + jz'(t).

Figure 2.1.1. Signal format for the MFS radar with t uO.
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STRANSMITTER

R (t) -zt + z' (t)

' • iDELAY

COMPLEX DATA
DUPLEX DD(i,j)

RADAR

ROTATING
OBJECT

Figure 2.1.2. Block diagram of the MFS radar data
gathering system.
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',

scatterer at range r(t). Suppose also that the pulse
;width T, is sufficiently small so that the thpulse of

s eth

the i burit can be considered as hitting the target at

time t =iT3+JT2+T. T is the pulse transit time between

the antenna and the point target. Then the complex

;representation of the received signal is
2r (iT3+JT2+T)

y(t) = B E a(t-iT3 -jT 2 - )

2r(iT3 +JT2 +T)
exp{j 2Tf. (t-iT 3 - J2 + ij}

c i
where j 2 =-i.

For simplicity of notation, r(iT3 +jT2 +T) will be

written as r unless it is important to show the T

dependence explicitly. For the reference signal to the

matched filter, let us use the complex representation of

the carrier wave in the following.

R*(ts-t) = Bexp{-j[2 Rf.(t-t s)+ij]

for tEiiT3 +JT 2 , iT 3+(J+I)T2], i=O,1,2,...,N-l,

j=O,1,2,...,K-1. R(t) is the impulse response of the

matched filter and ts is sampling time instant of the

matched filter. The matched filter-output is thus

t
SDr (ts R*(ts-t)yltldt

1s-T

17



=tSB1e-]j[ 2Tfj (t-tsl.+ 3ij]

i j it-Tl

e][2-afj fts-iT-J - r6 @S
S "3 2r.

a(t-iT3 - 2• rdt

EBB •L Its ej2Irfj[ts-iTJT2  2]
a a 2ri j its-T1 a (t-iT 3-J j 2--.F dt

D.r(t ) be sampled at

C!%T fori 0OT3+J 0T2+ TI,foi=01.,-,

[j =3,1,....,K-I. r 0  is the range at some fixed reference

I-,pint near the target point. Then, as illustrated in

'Fig. 2.1.2, the sampled data will be

inT +j0 T2 + 2r0 +T

',Dr(i ,J 0 )= IBB •J_ C r a(t-iT3 -JT 2 -- -)dr

3i0 T3 +J 2

.expO2if[(i 0 -i)T 3 +(J 0 -i)T 2 - 2r-)]

:where Dr(ts) s now denoted as Dr(i 0 ,J0) For r-r 0

01-1 - 2r 3"

isufficiently small (say [r-r 0 1<<Tl=pulse width),

I0
r 0 i ~T j T2r~i-)

•:*eI j 2f i- 3 + (j 0 -J)T 2 -•lr-r 0

•;•: =BB'Tlexp(-]27rffjO(E) (r-r 0 )}1.

•:•'- Thus in general
S2f,

rD (ij) 21TIBBexp(2T+( -)(r-r 0)}-

:whereUsing a simpler notation

1sfiinl mal(a rr1<Tus it)



P

2f.
k. then

D D(i,j)= TiBB'exp{]2irkj(r-r 0 )}. (2.1.5)

;This matched filter output which corresponds to the jth

Spulse of the ith burst is the sample data point

corresponding the the jth frequency. The output from each

:pulse is a complex number whose phase corresponds to the

-x two way path difference between the target point and its

reference, and whose "amplitude" TIBB' measures the

!scattering coefficient of the point object. The radar

system described will therefore measure the phase

differential between a target point and a reference point.

It should also be noted that if {f,} is arranged soJ

'that

f. =f + jAf
j 0

kj -2f 0  2Af
c C

where Af is the temporal frequency step, then Dr(i~j)

represents the spectral signature of the point object at

range r corresponding to the ith burst. If one takes the

discrete Fourier transformation of Dr(ij) over j, a range

'profile can be obtained. The above assertion, of course,

'holds true only if the target range r does not change

isignificantly over the burst length interval. For a

continually moving target (changing r with motion in

translation and rotation), the entire burst must be

'sampled before the target point moves sufficiently far to
_ _19



produce appreciable phase shift. The customary criterion

is to set the phase shift over half the burst length to be

less than rr/2. In the worst case, this corresponds to
KT 2fB

(vr -22 ) -

where vr is the range rate, fB the signal bandwidth over

the entire burst. The pulse repetition period within a

burst is therefore governed by

T 2 TCf (2.1.6), 2Kvr B

For example, with K=256, vr=2 5 0 m/s, fB=50OMHz, T2P151s.

This corresponds to a maximum unambiguous range of only

2.25km.

When the above condition on T2  is not met, range

profile distortion will be one consequence. If the point

target were stationary, D (i,j) in Eq. (2.1.5) is anr

accurate representation of the point target spectrum. The

DFT of Dr(i,j) over j will give a range profile which is

the result of an impulse function convolved with the

lambiguity function of the signal x(t). If the point

target moves in range by some appreciable amount during

the entire burst length time, the range profile will be a

rectangular (or pulse) function convolved with the signal

:ambiguity function. This form of distortion is called

range profile distortion. For constant v , range profile

distortion (abbreviated rpd) can be eliminated by phase
2ý



shift correction on D (i,j) . It has been estimated (40]
S~r

that

2f.
Dr(i'J)Ipdc= Dr (i'j)exp{-j21r( )(VrT 2 )}

jcorrected

Burst-to-burst range walking is another consequence

of the motion of the object. It means that the target

point has moved more than one range resolution cell

idistance during a burst time interval. In the absence of

range profle distortion, the effect of range walking is a

shifting in range between two adjacent signatures*.•.The

:moving target point gives rise to a similar linear phase

shift error of the data. Range walking (abbreviated rw)

'is corrected as follows (40]:
2f

Dr(i,j) = Dr (i,j)exp{-j2Tr(--6I) (vriT3 )

corrected

:where VriT3 is the distance moved since the first burst.

Range profile distortion due to substantial target

point displacement caused by rotaton of the vector is

!a much more difficult problem. Fortunately target point

displacement within a burst length is usually negligibly

small and of little consequence. For example say the

target rotation rate is w=0.02(rad/s), rro -30 m.; then

*A signature is the set of data associated with a burst
either before or after range compression.
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the maximum range rate is v =0.6 m/s. For a burst length

!of T=10 2 s , the displacement is Ar=0.006 m. For3

2f
f=500MHz, the echo phase shift error is ar = 0.004 rad

(0.0006X).

.2.2 Interpretation of Target Data

The MFS radar described in section 2.1 can be used as

an Inverse SAR (ISAR) system. The reference point will

Sbe the center of rotation of the object. Its range r

will still be kept constant. r0 is called here the gross

range. The ISAR will be modeled first in two dimensions.

This model will be extended later to three dimensions.

* th
In deriving Eq. (2.1.5) for the jth pulse in the ith

;burst, the following implicit assumptions are made.

1. The gross range r 0 is either constant or of a known

time variation. In practice r 0 is limited to an

accuracy of one range resolution cell. It is even

more difficult to identify the center of rotation

of an airborne target by virtue of its coherent

signal reflections.

2. The signal echoes are specular returns. This means

that the reflections can be approximated by

physical optics. Echoes due to diffraction,

reverberative phenomenon, and creeping waves are

i~i~i2



considered negligble. The specular assumption

holds when signal wavelength X<<2a where a is the

maximum radial extent of the target.

'3. There is no atmospheric frequency dispersion. The

phase delay from a target at constant range r is

the same at all frequencies.

14. There is no atmospheric propagation phase error.

* That is, the delay phase error is neglible. This

holds for relatively short propagation path

lengths in the troposphere.

Instead of a single point scatterer, consider a

i rotating object ( w rad/s) with every point on it being a

scattering center as shown in Fig. 2.2.1. Let the

rotation vector S be normal to the LOS. Suppose the far

Ifield assumption (r0>>2a) holds so that there is no range

curvature. Let (• ,n) be rectangular coordinates fixed on f
the object. Suppose at t-0, the (•,,) axes coincides

with the (down-range(x), ccoss-range(y) ) axes. Also

-suppose t-0 at the beginning of the first pulse (j•0) in

Sthe first burst (i=O). Here the aspect angle is

synonymous to the angle between the x-axis and some

Sparticular fixed axis (Z) on the target. The aspect angle

at time t is equal tO wt, where w is assumed to be

constant. The (x,y) coordinates are thus related to the

S((,t) coordinates by
23



y

Radar
antenna it

(x + jy) = ( + jl)exP{-jw}t

_ _)

2 f~
k.-

minnk M"he2

Figure 2.2.1. 2-D imaging ____try and the pupil fuctiou.
ii~i (a) Two dimensional target coordinates and the
i'•.!!rot~ating object. (b) Tihe resiultinrg 2-D pupil

•: ; function of the •radar inaging system.
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kk

With wT2 not sufficiently With oT2 sufficiently

small smal I

Figure 2.2.2. Distorted data sampling patteiin in the Fourier
domain for large values of wT2 vs. undisLorted d.qta
sampling pattern in the Fourier transfo~ma domain for

small values of WT2 .
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(x+jy) = (E+fr)exp{-j]t} (2.2.1)

Finally assume that there is no range shadowing so that

at the wt -aspect angle, the reflecti-ity of any point

scatterer at ( i,n) is o(n;t) The point scattering

coefficient of the same point scatterer is denoted as

o(x,y;wt) where (x,y) and (ý,n) are related by

Eq. (2.2.1).

The range vector T of the point (ý,n) at time t is

r(t) r 0+(ý+]n)e-]t (2.2.2)

Let r(T) be the initial distance of target point (ý,n)

when the first pulse (i=O,j=O) hits the target. The two

way transit time for the first pulse is therefore 2 T

Since the second pulse is transmitted T seconds later,

the target point distance when the second pulse hits the

target is r(T+T 2 ). It is easy to see that the target is

illuminated by a pulse only at the discrete times t=tij

where

t. iT j+-
Stj 3 +T 2 +t (2.2.3)

for i=0,1,2,...,K-1; jsO,l,2,...,tN-.

----------------------
For any realistic object, shadowing cannot be avoided.

But this assumption must be made for analytical
justifications.

____ __ _______ ____ _ _ ___ 26



Let
(ý+jn) pexp{j4}.

iIt follows from Eq. (2.2.2) that

r(t) = [r2+ p2+2r 0 Pcos(wt-4)]l/2

s 0 r 0
,~ =r[1+ ("0) 2+2 (jF-•) Cos (rot-f)]1/

With the far field assumption,
p 2 <(2a) 2 <<
0 r

Thus

p r(t)= r 0 [l+2(-2-)cos(wt-q)] 1/2
0 2

= r [1+ E Cos(wt-ý)+O(-2 )] (Taylor's expansion)
0 r 0- r0

= r 0 +Pcos(Wt-f) (far field assumption) (2.2.4)

It follows from Eq. (2.1.5) that the data from point

target (ý,rl) alone is

j27rk. (r(t)-
Dr (i,j) TiBB'a(ý,n;wt)e20

j21Tk pcos (Wt-f)
T BB'a(,n; wt)e

The variable doppler phase shift of the scattering point

!is thus

kPcos (wt-f)

where k=kj when tc[iT 3+jT2, iT3+(j+1)T 2] for all

:values of i, j defined previously. Since the data is

sampled only at t=t j=iT3+JT2 +T, the sampled data becomes

i-i D r(i,j) T 1iBB'o(&,n;wt ij)

P2nk pcos (iwT +JWT +2 WT-O) (2.2.5)

_ _ _ __27
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-2Let 0i=iwT . Typically with w=0.02 rad/s, T2 =10 s,
12

and with no range ambiguity,

caT<T 2 = (0.02)(10-2) = 2x10-4 rad.

T can therefore be dropped from Eq. (2.2.5). Then,

jkj pcos (8-ý+jwT2
Dr (i,j)=TIBB'a(C,n;wtij)e . (2.2.6)

.Letli !..a
= ý j~ (2.2.7)

xi, yi are therefore respectively the range and

cross-range distances of the point (•,n) from its

threference center at the beginning of the i burst.

Pcos(ei-+jwT2 ) = Re{(ý+je)e e }

-j(jwT)
= Re{(xi+jyi)e }

= xicos(jwT2 )+Yisin(jwT 2 ) (2.2.8)

Using the previous example again, but with the number of

;pulses per burst being K=256,
-2 -2JwT 2 < KwT 2 = (256)(0.02)(0) 5 .12x10- rad.

ITherefore JwT 2 can be dropped from Eq. (2.2.7) and the

following approximation can be made.

Spcos(Oi-O+jT) x

&cosai+nsinOi (2.2.9)

Substituting Eq. (2.2.9) into Eq. (2.2.6)

_____28
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D (i,j) = T BB'a(xi,Yi;Wti )e7kjxi (2.2.10)
r 1 i i

:Another way of looking at the problem is that one would

like to keep jwT2(<<(/2 by forcing

T 2K (2.2.11)

such that the approximation in Eq. (2.2.9) still holds.

For imaging a seaborne target with w=0.6 rad/s and K=256,

Sone would want to choose the pulse repetition period T2

such that
-2«T <<•/(2x0.6x256) 10 sec

: which corresponds to a pulse repetion frequency of at

:least in the order of 1KHz.

It follows from Eq. (2.2.10) that the composite data

from the entire object is

D(i,j)=TIBB' ff (xi,yi;wtij)e dxidyi

Target
Area

Carrying out a coordinate transformation with Eq. (2.2.7),
: ;; J2rkj (Rcosei+nsinOi

(D (i, j)=T1 BB' J o(ý,n;wtij )e d~dn

Target
Area

If a(En;ti is independent of ,tij and

z , #Jeif (•cosO+nsinO)
Z Z(f) (fa )e d~dn (2.2.12)

- 2-D Inverse F.T. of o(&,n),

Then T BB'Z(oilk

_ _ _ __29
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Therefore, for a general object the data collected by

the MFS radar can be interpreted approximately as the 2-D

Inverse Fourier transform of the target reflectivity

function o(ý,n)- i corresponds to the aspect angle ei on

th .th
the object at the beginning the I burst; j corresponds

to the jth spatial frequency component k of the object

reflectivity function.

For most of the timea( 1,n;wtij) represents the

diffraction coefficient of (•,n) depending on its

aneighborhood. According to GTD [201, both the magnitude

and the phase of a will change with Oi"

In the case when wT2 is not sufficiently small to be

neglected, one needs to substitute Eq. (2.2.7) into

Eq. (2.2.6). Carrying out an analysis similar to the one

above will lead to

D(i,j)=T BBZ, (kjcosj•T kjsinjT2 (2.2.13)

where
Z y(f yf )=Zf(tan-1 (fy/f ,2+f)•

Thus even when WT2 cannot be neglected, the data still

represents the two dimensional inverse F.T. of o(x,y)

except that now the transform domain sampling follows a

curve
fx(j) = Rjcos(jwT2)

f (j) = kjsin(jwT2 )S2)

30
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where f (j) and f (j) are radial and cross-radial
X y

dimensions in the transform domain. Figure 2.2.2

illustrates this distortion in the transform domain

sampling.

a

'2.3 Generalized Three Dimensional Formula

The three dimensional representation of the scattered

;wave from a rotating target was formally derived (41 in

terms of the wave propagation vector k and scattering

'point vector i. With reference to Fig. 2.3.1, the far

;field electromagnetic wave i'acident on the object can be

approximated by a plane wave.
-J2iTft Jk. (x+r 0)

E i(tx)= E 0 e .e (2.3.1)

where f is the signal frequency, E0 the field strength of

:the incident electroma9oetic wave. If one uses

'Kirchhoff's approximation oue gets for the backscattered

!far field E at the receiving antenna (4]

E -t) jJk e d§ *(3E)
;?I Ejk.x (x~r0 )k

Illuminated 4Ar0
4surface (2.3.2)

where, A=c/f, dS is the incremental area vector normal to

the target surface, and

Uk ='El l

Define

31
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- =-2V (2.3.3)

and

p(p) {-"e p.dS(x). (2.3.4)
2 illuminated

surface

By substituting Eq. (2.3.1) into Eq. (2.3.2) and using the

relations in Eqs. (2.3.3) and (2.3.4) one gets

E -j(2rft+p-r 0 )
E p(p)e (2.3.5)

s

:By restricting the class of targets being observed to only

;convex objects, p(P) can be rewritten as

- fJ e P.dS(x, (2.3.6)

p. n>O

!where F is a unit vector in the direction of dS. By

linspecting Eq. (2.3.5) it can be seen that p(p) is a

'measureable quantity by homodyning* Es and phase shifting

:the resulting baseband video by a phase equal to p-ro

which can be determined apriori. p(p) can therefore be

treated as the baseband video signal of a coherent radar

system except that other than being baseband, it is also

H*!omodyning is a demodulation or "mixing down" operation

in which the video signal riding on a carrier frequency is
mixed with a 1800 out-of-phase carrier of the same
frequency resulting in a baseband video.

32
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'phase shifted by an amount equal to p.r-0 Since the video

signal can be easily measured by a standard radar system,

it is justified to concentrate only on p(p). Since p(p)

is the video signal measured off the illuminated side of

the object (i.e. p.n->O), the video signal measured off theI

non-illuminated "back" side of the object is P(-P). It

follows from Eq. (2.3.6) that

S(•) +p*(-p) L Je"apx p'dS(x) (2.3.7)

where S is the entire surface of the convex body B. From

the divergence theorem

S÷)p* (-p) -j d
2l B

e-j e- P'Xdx (2.3.8)

B

- P y(x)e dx (2.3.9)

2/7t f

where Y(i) is the characteristic function of B defined as

0 x B.

If one further defines

it follows from Eq. (2.3.9) that r(1) and Y(x-) are Fourier

[ ___33
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transform pairs:

P(p) =fY(x)e-px dx. (2.3.10)

This is Bojarski's identity.

Since P(p) and P(-p) are respectively the phase

shifted baseband video signal measured off the "front" and

"back" of the target, r(ý) represents a composite phase

Ishited baseband video signal measured off the entire

!target body. The only difference with r(p) is that it is

:scaled by the propagation vector parameter p. By the way

the characteristic function Y(x) of the target is defined,

y(x) represents the spatial distribution of the point

scatterers on the surface of the target.

Equation (2.3.10) thus shows that by measuring the

composite phase shifted baseband video signal r(p) for all

values of p (in frequency f and aspect angles), the

characteristic function Y(x) of the target can be obtained

by simply Inverse Fourier transforming r(•).

Now it will be shown that it is unnecessary to pose

the target-data relationship in terms of r( ) and the

characteristic function. A direct relationship between

the target "reflectivity" function O(;ik) and the signal

return data D(R) will be derived in line with the 2-D

model used earlier.
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Write the transmitted signal (or beam) in vector form

2f.

kij . (•i' i't ) (2.3.11)

•t~h
where ai=beam azimuth at the beginning of the i burst,

6.=beam elevation at the beginning the ith burst,
1

f.=carrier frequency of the jth pulse.J

SLet r 0 =vector from the antenna to the t.aget center or

point reference,

=vector from the antenna to a paint on the target.

Note that kij can also be written as

where k=signal wave propagation vector

X=signal wavelength (=._c_)
2lnk

k k

With this new notation, Eq. (2.1.5) can be rewriten as

Dr (kij) = TiBB'exp{21rkij. (r-r0).

*-It follows that the point target vector is

* x(t) = r(t) - r 0 " (2.3.12)

For the same reason as in the 2-D case, the data are

'sampled at t=tij=iT3+JT 2 +¶ is in Eq. (2.2.3). The data

from a point target x can this be written as

OEDr(kij) = TiBB'o(xij;kil )eJ2 ij ij

where xij stands for x(Vti. If the scattering
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coefficient a stays constant with aspect change,

o(xij;ki .) = o(xij).

If all the assumptions made for the 2-D model holds,

the composite data from the 3-D object is

m (kij )=BB' It a (x ij)e dx1 ij (2.3.13)

Target
volume

Let
Z(R) =J(jx)e2)e dx

= 3-D Inverse F.T. of a(x).

Then Dk )j BB' Z( (ij)

Again as with the 2-D case, D(kij) can be interpreted as

the 3-D spatial frequency spectrum of the target
scattering coefficient.

An important result of Eq. (2.3.13) is that the

Fourier transform data in the k space of the scattering

coefficient function for one signature (say the i
th

signature which corresponds to the i burst) coincides :I

direction with the actual physical aspect angle direý'tlor"

of the object. One can now directly associate the aspect

angle of the object with the angular dimension of the

Inverse F.T. data in k space. In practice because the

available signal frequency is limited in the lower end

(fmin) by the scattering model and in the upper end (fmax)
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limited by technologyj the available F.T. data is

contained in between two concentric spheres. This is

illustrated clearly in Fig. 2.3.2.

In the 2-D model of section 2.2, the target is
assumed to be rotating on a flat platform (say (xlx 2 )

plane) with rotation vector w in the x 3 direction.

Because the incident radar wave is parallel to this plane,

one should get the Inverse F.T. data within an annula

ring on the (xlx 2 ) plane as shown in Fig. 2.3.2.

However, if the rotation platform is not rotating in the

same x3 direction at all points in time, the scattered

data will not all lie on the (XX 2 ) plane. This is

Sexpected to occur for aircraft, which at any instant in

;time will have pitch, yaw and roll besides the rotation

effect due to translation. A similar situation occurs for
.... seaborne targets in which one has again the roll, pitch

:and yaw motion besides the rotation effect due to
translation. The major difference between an airborne

target and a seaborne target is that for most cases the

long-term translational- rotation effect would be the

predominant rotational motion of an aircraft; meanwhile, it

is the shorter term roll, pit:ch and yaw that wou^d be

predominant for a ship target, especially in high sea

states.

Now we have a compact model in which all kinds of
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wave
vector

Radar
antenna

r

Figure 2.3.1. 3-D radar target model for Bojarski's
identity.

x3t 3-D solid sphere

•: ~ desired data

in 2-D model

actual data-=-:•':-due to target/

roll. pitch, and ya

Figure 2.3.2. 3-D data in Fourier domain showing data
confined in concentr!c spheres of radii k andmink (Note that the deviat-ion of the F.TC.
-dala froo the planar annula ring dke to target

_rotatiou vector changes.)

F,..
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rotational motion with respect to the LOS can be

completely accounted for in Fig. 2.3.2. One should keep

in mind that this is a direct result of the fact that the

propagation vector (k) direction coincides in direction

iwith the Inverse F.T. vector (p) in the data. An

'important point here is to realize that whatever the

labsolute rotation rate vector • is in the absolute fixed

Icoordinates, only the components of i that are

tperpendicular to the LOS contribute to the imaging

process. Therefore, where the data lie in the 3-D sphere

' depends only on the aspect angle of the target with

:respect to the LOS. The component of 6 that is normal to

!the LOS determines only the scale along the. aspect angle.

'This is obvious from Fig. 2.3.2.
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Chapter 3

POINT SPREAD FUNCTION, SYSTEM RESOLUTION

3.1 Spatial Frequency Units

In Eq. (2.1.5) k. was used instead of for theJ c

reason of simpler notation. It became clear with this
th

substitution that for a given burst (say the i burst),

the measured data given by Eq. (2.1.5) was the spectral

signature of a point object. That is, if the target

ireflectivity and ranges were constant, the data

* corresponding to signal frequency f. was a measure of the
th1 kj spatial frequency component of the point object. By

incorporating the assumptions made in secton 2.2, it was

further concluded that the radar data D(i,j) represented

th
along the direction of aspect angle o the k spatial

frequency component of the target reflectivity function.

¶This notion was easily extended to the three dimensional

model in which the spatial frequency (kj,O.) was replaced

by a vector kij. kj is therefore a more useful notation

when it comes to relating the radar data with the target•,.. ith
reflectivity function. One can now measure the kj

spatial frequency component of the target by using a
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carrier frequency f. such thatJ
2f.k. 2
cwhere X. is the carrier wavelength.

J

Justification for using spatial units can also be

found in SAR. For one thing, equations in SAR have been

derived in a variety of ways by many authors. In almost

all of the derivations, the time dimension has been an

essential part of the formulae being derived, -nd the

:meaning of the formula sometimes becomes obscured in the

many factors in )lved in it. Yet, in almost all the

applications for which SAR was designed, the spatial

distribution of the object is the central objective. It

( seems reasonable, therefore, to put the equations in

spatial units rather than in temporal units. Of course,

when one is concerned with implemaentation then temporal

( •units must be taken in consideration. Another reason for

preferring spatial units is the fact that the echo phase

is determined by the relative spatial distribution of

scattering centers.

The first basic equation relating temporal units to

spatial units is

S[ x vdt'
it

where x is the spatial distance of an object at instant t.
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itravelling with velocity v along a linear path.
II

Next, the Doppler frequency which is usually

considered in temporal units, can be expressed in spatial

units. Consider for example the strip mode SAR geometry

in Fig. 3.1.1 where the aircraft is flying a straight line

along the x-axis with its antenna looking down and forward

at squint angle 8s . Consider a point target C. The
aircraft is at point A at time t=O, with slant range Roo

!B is the aircraft position at any other instant t.

Suppose the transmitter temporal frequency is f0

I (wavelength X0 ), then the phase of the echo from point C

will be
*(t) = 27Tf0 2R(t)

After rearrangement,

0#(t) =2Trk R(t) (3.1.2)

where k0 is the spatial frequency associated with fo given

by the conversion equation

0  -0 (3.1.3)

Hence, phases can be written in terms of spatial frequency

land spatial distance using the conversion Eq. (3.1.3).

This representation is also mearingful from the optical

signal processing point of view. if a monochromatic
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--------

y

v aircraft velocity
vvA = aircraft position at

time t-0
R = initial slant range

"0 at time t=0
Z h = aircraft altitude

= squint angle
(down looking)

Figure 3.1.1. Doppler geometry for Strip mode SAR.
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illuminates the x-axis of Fig. . with

wavelength c/2f 0 , the phase of the illumination at any

point along the x-axis trajectory relative to the phase at

some fixed point on the x-axis (say point A) will be

ý(x) = 27rk 0R(x). The instantaneous spatial frequency at

any point x due to the phase ý(x) measured along the

x-axis will in fact be dL (x) =k dR(x) However, the
2•T dx 0 x

instantaneous Doppler time frequency is

1 dp(t) k dR(t) (x)Jv.
27 dt 0 dt [k 0

;Therefore the instantaneous time Doppler frequency at

point x is related to the spatial frequency of the

illumination on the x-axis by the velocity v. For this

I reason, the spatial frequency can be treated as the

spatial counterpart of the instantaneous Doppler time

frequency with the velocity v as the conversion factor.

We will call it the Spatial Doppler frequency.

For another example let us look at the strip mode SAR

again as in Fig. 3.1.1. Using the cosine rule on triangle

'ABC

22 (s
R(Q R0t) + (vt) 2R0 vtcos (08) (3.1.4)

Expanding in Taylor's series, then
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0[ vtcos ( 2] (3.1.5)
R(t) R0 1 +(Vt)

L R 2R 2

if one keeps only terms of 2nd order in the Taylor's

Series expansion. Substituting Eq. 3.1.4) into

iEq. 3.1.2),

2(t) = 21kR s + (Vt) (3.1.6)0Rt 2 R ]

I

"With Eq. (3.1.1)

xRL2 -2-1 (3.1.7)

If the Doppler frequency is defined as

A 1 dO!;i fD (3.1.8)
D 21 dt

•: then Eq. (3.1.6) leads to
:2vf 0 cosO 2v f 0 t

f +7:c c

If the spatial Doppler. frequency is defined as

k4 1 d• (x)
D 21T

then Eq. (3.1.7) leads to1=-

kD = k 0cos% + k0 ( d) (3.1.9)
0

One now has the Doppler frequency in a very compact form.

k is the rate of change of echo phase per unit distance

1 ...- 4 5



travelled by the aircraft. This is the actual fundamental

doppler which determines the system's imaging ability.

Besides, kD is a function of the distance x of the

aircraft at point B irrespective of what perturbations

might exist on the velocity v. Notice also that the first

Doppler term in Eq. (3.1.9) is due to the relative

itranslational velocity (along the line of sight) between

points C and A. This component is called the

translational Doppler (kt). It is given here in spatial
t

frequency units, i.e.

kt =-k 0cose8 .

The translational Doppler is zero for the antenna beam

which is directed broadside at 6s = 90 For more complex

trajectories of the aircraft, kt is more complicated with

the squint Os being a function of time. This is related

to the problem of motion compensation.

The second term k0( is called the differential
E0

Doppler (kd) in spatial frequency units. The differential

Doppler is solely responsible for the high resolution

imaging property of synthetic aperture radar systems.

This is in fact true for all modes of SAR.

kd k0 (2-)
0

Finally if one compares Eqs. (3.1.8) and (3.1.9), the

spatial frequency kD can be converted readily to time
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frequency fD by

f vk (..0D D (3.1.10)

3.2 Point Spread Function in the Continuous Domain

SAs noted earlier in section 2.3, the Fourier

transform (F.T.) data was restricted to two concentric

:spheres. For the two dimensional model the data was
2fS2fmin

restricted to an annuls ring of radii -- =k and
2f - k If the data were available for all

c max"

frequencies and aspect angle, the target can be

reconstructed by taking the F.T. of the data.

Since the data represents the 2-D F.T. of the object

'in the 2-D model, and since the object can be

reconstructed by taking another 2-D F.T. on the data, the

entire radar system and the reconstruction processor can

be lumped together and viewed as an imaging system. As

such, the. annula ring structure in the F.T. data can be

viewed as the pupil function of the imaging system. The

-F.T. of this pupil function then gives the point spread

function (henceforth abbreviated PSF)or impulse response

of the imaging system.

Suppose there is no perturbation on the rotation

%vector of the target. The annuls ring pupil function can

be written as an isotropic function as follows.
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G(k) = circ (k/k -circ (k/kmin) (3.2.1)

where
circ(x) ={

0 otherwise

Polar coordinates have been used for convenience. The PSF

is thus

g(p) = {G(k)}

= Jl(2rk)maxP) Jl (2kminP) (3.2.2)

max -kmin p

where B{'} indicates Fourier Bessel transform,

p radial polar coordinate in the spatial domain,

J ")Bessel Function of the 1st kind, order 1.

'The PSF of the radar imaging system is plotted in

Fig. 3.2.1. It is difficult to predict the behavior of

the PSF from Eq. (3.2.2). Instead, some approximate forms

will be studied.

"PSF for Small Values of p

Prom the relation

1

X1 (d (3.2.3)

the PSF can be written as
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_6 .5 kB 6.k;

Figure 3.2.1. Point spread function of the radar imaging
system.
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g(p) = -1 max

2 7IPkmin

Suppose the "narrow" band assumption holds, in which

k >> k
0 B

where k0= (km+km)

B max min

Then

k 0 ? max

g(p) _ j (&)d& (3.2.4)
-"0 k.

2 kmin

The integration interval is linearly proportional to P.

Hence for small p( «<_ , J (•) is essentially constant.
kB 0

!Thus

g(0) T 2irk0kBJ0 (2rk0P) (3.2.5)

SThis approximate PSF is plotted in Fig. 3.2.2a with

kB 0.1k0 .

P.•LSF for ge Values of p

Por large p one can use the following approximation

(page 401,38).

J n =W cos(C- E (3.2.6)
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D ~0.38/k•

(a) s

Exact P

%I. ý/ko Approxtiate PSF

2iiýkBkJ 0 (ir kop)
_4- -- -- B , B Io B

-0.8 0

(b)

I~~~ t I$ ~hn~kp
-6.U 0

{: • .~~~ I I. . 1 I• -I . i .. .I 1 2 1....._LJ .. I. _ .... m ! ....I I

.4.5k"1 o0•.-

Figure 3.2.2. Approximate PSF of the .MS rTa rw gu1j*gitsuem.
W(i)For small values of p and -,'.e Rayleigh lutik.
(b)For 1arge values of p.
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'Substituting Eq. (3.2.6) into Eq. (3.2.4) and using the

narrowband assumption again, one gets by integration

-2kI/2( ) 3/2. kBg(p)= 0 sin(2Tpr- )sin,2TPk0) (3.2.7)2 0

The closeness of these approximations is evident from

:Figs. 3.2.2a,b° With k0 .10kB, the approximation for small

p in Eq. (3.2.5) is accurate up to about 1.4kk 0 For
Slarge p,

SIg (P)CI p

The beating phenomenon for large P which is predicted in

Eq. (3.2.7) is also evident in Fig. 3.2.2b.

Even though kB<< k0 for the current system, in

practice the temporal frequency corresponding to kB can be

very wide in bandwidth, for example as high as I GBz.

3.3 Poinrt Spre~d Function from a Different Point of View

Thf: point spread function in the previous section was

derived as an optical system. Here we will try to

understand the system in a different way whlZh will allow

us to analyze the system more as a matched filtering

problem.

Suppose point object P2 is located at polar

5I
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coordinates (p 0 'o) with constant reflectivity co0 From
S:Eq. (2.2.6) the recorded data is proportional to

G(e,k) = aoe

where (0,k) are polar coordinates in the F.T. domain.

Let the data G be processed to be resolved in range

first. From the expression above for G(O,k), one can see

ithat for each point scatter P at distarce £ along the LOS

from the center of rotation, a linear phase exp{j2nkt}

will be introduced. Therefore in order to identify a,
:point scatterer at range 2, G(O,k) can be passed through a

Smatched filter corresponding to the linear phase returns

from that point scatterer. The weighting (impulse

response) for this matched filter will be [e2ak£]*

over all possible values of k.

Thus the matched filter output is
"• g 0j9k dk "

Sg(O,£) fG(O,k)e

This is the one-dimensional Fourier transform of the

collected data. Therefore, Fourier transforming the data

also corresponds to matched filtering the data to get

range compression.

Suppose one has a full range of continuous data for

a.Ll frequencies between kmin and k and for all aspect

53



Iangles X2(0, 2 1) .Taking the 1-dimensional F.T. on G

with respect to k will lead to

(1/2kB3
,g (O, ) a SG(8,k)e- j23 kidk

-1/2kB
i = ° S Be12vk0r [P cose-£] (3.3.1)

-as e 0 - 0 C j0 0
where

S0= sinc[kB(U-P 0COSW)]

sinc(x)= sin(7rx)/7rx

Now the data is resolved in range and the function g(O,k)

is called the range compressed data. It is obvious from

'Eq. (3.3.1) that g(6,£) peeaks at k= p0 cos0. This means

that the matched filter response peaks only when the

matched filter parameter Z matches with the instantaneous

range p0 Cos

After range compression, the phase of the data g(0,L)
5t

is proportional to only k0  and the range differential
|0

P0cosO -Zbetween the point object and the point center 0.

The magnitude of the data is proportional to S (Z) which
0

peaks at k =P0 coso. However, range compressed data

having the same characteristics as g(o,y,) can also be

obtained from a completely different radar system with a

completely different signal format. Thus, if the target

is rotating slowly enough so that it satisfies the

conditions discussed in chapter 2, one has the option of

choosing other radar systems to achieve the same imaging

p~operty. For example a linear FM signal wit) Lynal
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bandwidth _k and mean frequency -.k will give
2 B 2 0

essentially the same characteristics as the multifrequency

bursts.

In the e dimension, one can again use the matched

filtering concept to reconstruct the point image of the

point scatterer P0. Since the range compressed data from

PO is proportional to

j27k 0 [P0Cose-L]
sinc (kB(£-P0coso)]e

ideally the matched filter is two dimensional.

In the O dimension, one can again use the matched

filter concept to reconstruct the point image of the point

scatterer P0. Since the range compressed data from P0  is

proportional to
j21rk 0 (Pocoso-L)

sinc[kB (R-Pocos) le

ideally the matched filter is two dimensional in nature.

The response of the filter matched to P(p,0) is
1 2i~ .-jPpk 0pcos (O-ý)

,o(P)= h-J g(OA)sinc kB (L-pcos(O-•)] d~dg.

10 10

In practice, this implies that long processing time will

be needed to implement the filter. Instead, an

approximate filter impulse response function will be used

as follows:
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-,12Tk0Pcos (O-f)
sinc kB (Z-pcOs(O-p)).(-pcos(O-f)e

Using the expression for g(O,£) in Eq. (3.3.1) the filter

response will be

o(P) 2if g(8, )sinc[kB(£-pcos(e-,))16(£-pcos(O-Op.

0 *e J2wk0Pcos((6-f)e e drd b s10 12T

= •-• sine kB(pcos(O-O)-p cOs(e-•0)

a0 j 21TkB [ PCOS-pcos (e-f)]
•e B0dO,

where the k dependent phase term is dropped because only

the magnitude of the matched filter response will be of

interest here. The above expression for the matched

filter can be observed as being a contour integration

along the contour

2= pcos(O-f).

fBy referring to Fig. 3.3.1 and using the relation
°P 2 2 _2 P Oo

p0  -2 0pc

tan ),the following simplification can beP0-pcos' made

Pos -pcosl(O-fl) p'cos(l+0'). Therefore
cU2) -sin2kBck(0+'I O S ( dO'o0

Si sine~ [kP'C°S (O+W)e dO

* But P' is the distance P P between the target points,
0

S0+•') is the angle between P and the LOS. Therefore

0cos O(0+') is the projected length of PoP on the LOS. We

can, for convenience, make a change in variable 0'=O+€'

Then the filter response at point P is
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Projected distance of P0Son the LOS

•0• Radar

P

OWO

-- 00

Center of
rot tion

Figure 3.3.1. Projected distance onto the LOS
of point P is pcos(O-ý), and

of point P is PocosO.0. 0
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2 T20 r [-j27rk 0 P'cose'

G1() sinc[kBP 'cosO]e do'

(3.3.2)

This means that any target point at distance p' away from

P0 will have a non-zero contribution to the reconstruction

of P0, proportional to a(P). a(P)/o 0 is by definition the

point spread function of the imaging system. The PSF in

expression (3.3.2) can be rewritten as
[21 k0+1/2kB

(P) 1 2  rekpcosdkd' (3.3.3)

0 1/2kB

which is exactly the same as Eq. (3.2.2).

Even though we arrive at the same point spread

function from both the optical system view point and the

matched filter point of view, the latter approach gives us

a more intimate understanding of the reconstruction

process. In fact it suggests a method to reconstruct the

target, which is more suitable on a digital computer. Its

further importance will also be obvious when we come to

the problem of sampling requirements.

3.4 Resolution of the Imaging System

The resolution obtainable from an annula pupil

function will be of interest here. Just as in the problem

of defining the bandwidth or the time width of one
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dimensional signals, we are faced with the problem of

defining the resolution of our system. There are two ways

of looking at the resolution of the system. One is the

usual resolution criterion used in optics. The other is

from the signal bandwidth approach.

Resolution From the Point Spread Function

From section 3.2 we have seen that for small values

of p , the PSF can be approximated by J (271k P). With

Rayleigh's criterion for resolution,

J 0 (2kP) = 0
00

where i is the Raleigh resolution. Therefore

;21rk0 6 2.4048 and the Rayleigh resolution is

0.3827S= k0 (3.4.1)

40

This resolution limit is good at least for kB/k0 ratios

'less than 0.1. The surprising result here is that the

bandwidth becomes insignificant with this resolution

Slimit. To show the importance of k0 in the sharpening of

the point spread function and therefore the sharpening of

the resolution limit, we will compare two PSF's, one with

k0  lOkB and the other with k0 = kg . The second case

represents a disc pupil function circ(k/kB ). The

magnitudes of the PSF's are shown in Fig. 3.4.1. The
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k~J1 (2inmaxp) Imi( 2  Inp) -

Annula ring pupil function kJ (brkp)

Disc pupil function

0.38

S-2(k -00.61 I

0
m •0-10/k 0  0 10/k 0  2/k0

Figure 3.4.1. Comparison of point spread functions for the
• ~a~mula ring (k,= 10k3) and thle disk (ko0- •

pupil fmictionrs.

•:0
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Rayleigh resolution of the disc pupil function is 0.61/k

compared to 0.38/k 0 for the annula pupil function. The

improvement in resolution from the disc pupil to the

annula pupil is
0. 6 1/kB

- 16 fold.0.38/k0

Unfortunately, we are getting this resolution

improvement by paying a price at the side lobes. The

first sidelobe for ring pupil PSF is approximately

-4dB (0.4) while that for the disc pupil PSF is

approximately -8.7dB (0.135).

Comparing with the PSF of a rectangular pupil

function rect(k/2k ) the resolution improvement is even
B

more dramatic, but again with a worse sidelobe level. The

resolution and sidelobe levels for the three systems are

summarized below:

TABLE 3.4.1

RESOLUTION LIMIT AND SIDELOBE LEVELS OF
DIFFERENT PSF'S.

Pupil Function Resolution Sidelobe Level

Annula Ring (k =10kB) 0.38/k 0  -4.0dB
0 B0

Disc (radius kB) 0. 6 1/kB -8.7dB

Square (length 2 kB) 0.5 /kB -13.4dB

Even though kB does not show up in the expression

for the resolution limit of the annula pupil PSF, kB
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affects the level of the sidelobes. The effect however,

is not significant. The table below shows the change in

sidelobe level with respect to k B"

TABLE 3.4,2

VARIATION OF SIDELOBE LEVEL WITH BANDWIDTH

kB First Sidelobe level

0.1 k 0  -4.01 dB

0.2 k -4.05 dB

0.4 k0  -4.37 dB

3.5 Resolution From the Doppler Bandwidth of the Signal

The resolution of the system can also be obtained

from the signal bandwidth of the radar returns. For any

constant aspect angle0 , let us call the projection space

data (range compressed data) g(004) a range profile. A

range profile is therefore the projection of the target

onto the LOS and then convolved with the sinc(£) function

due to the narrowband property. From Eq. (3.3.1), the

projection of a point target at (p 0 ,0) is

i +j2nk 0 coso
g(0, ) =o 0sinc(kB (9-P 0COSO)IC (3.5.1)

This can be rewritten as

j2rk0 P0 -k 2"k 0 P0 (1-coso)
g(o,k)=a 0sinc[k (L-P 0 cos) ]e .e

0
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As in Fig. 3.5.1 the phase term in the last

exponential is the phase due to the distance of the point

target from the initial point at 0 0. The relative

phase of the signal at aspect angle 0 is

= 2ik 0P0 (1-cose)

The incremental phase change when the aspect angle makes

an incremental change AO is

AO4-A0 = 2rk 0 p 0 sin0 AO

This is the phase change along the contour k =. P0 cos

'Within this angular increment, the point target traverses

an arc of length p0 .AO The spatial Doppler frequency of

the signal can be defined as

1 change in signal phasekd • distance travelled by point target

AO

'Thus kk0 sinO (3.5.2)

The maximum Doppler return therefore occurs at Om n/2and

minimum occurs at 0 = 3v/2. In particular,

k 0d• "max 0

k -
d 0

The Doppler bandwidth kdB= 2k 0  It is well known that the

inverse bandwidth is a good measure of the resolution

obtained from a signal. The resolution of target points
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ko = 0

-00

Radar

p (1-cosO)

0

Phase recorded at aspect angle is

x 2i 0 o2p (l-Cose)
CA~ i 2•,op~-•o•)

27rkp (-Coso).

Figure 3.5.1. Figure showing the distance of P
along the LOS (range) from the 0

initial point at aspecý o-o.
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ialong a circular arc can therefore be taken as

6 - (3.5.3)k0

In other words, any two points sitting on a same circle of

; radius p0 can be resolved if thei'r arc distance is greater

than 6. Since 6A is independent of the radius Po ' the

resolvable distance 6A (which we will call arc resolution

for now) is uniform over the entire target.

Since the pupil function is Isotropic, the PSF must

also be isotropic. Thus, the above arc resolution limit

is also a resolution limit in radial distance. The two

dimensional resolution can therefore be closely

represented by 6A.

The interesting result here is that even though a

completely different approach is used, the resolution

limit from both the optical system arnd the bandwidth

Sconcept agreed very closely, More importantly, both

approaches come to the zate .onclusion that the bandwidthi

k B (in radial frequency) does not play a dominant role in

detormining the resolution. This conclusion seems

contrary to tht fart that for each 0, the projection data

(range profile) resolution is determined by the inverse

i bandwidth (k ) . Because of this we should clarify the

-relationships between resolution and k and k.. If we
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consider only one projection data (range profile) from a

given aspect angle, the resolutin obtainable is only

along the line of sight and it is proportional to kB 1

On the other hand, if we consider the projection data over

the complete set [0,271 of aspect angles , the resolution

is proportional to k 0 Between the two extremes, both

k0  and kB are expected to play an important role. This

will not be pursued further here until we come to consider

the distortion (aberration) effects in practical

situations.
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Chapter 4

DISCRETE PSF AND SAMPLING REQUIREMENTS

4.1 Disc'ete PSF

The polar coordinate Fourier transform data in the

iMFS radar system is available only in discrete frequency

steps. The radial frequency sampling interval is

SAk 2Af/c. There the data is discretized radially. In

the azimuth direction, data are sampled only over

* increments of aspect angle AO = wT3 . Because of this

* radial and angular sampling, the PSF is no longer

available in a closed form as in Eq. (3.2.2).

In Chapter 2, it was shown that the target

reflectivity function o can be computed by taking the

Inverse F.T. on the radar data. In polar coordinates,

let g( MmI) be the computed target reflectivity function.

I Then

I jk~nax(271 27k

,g GgO,k)e dkdO (4.1.1)

In order to compute the PSF, let G(o,k) be the data from a

point target at (p= 0, € = 0); thus
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G(O,k) = (O-i (k-k.)
where 6 (x) is the usual Dirac delta function,

kj= km+ jAk for j=0,l,2,...,K-I

O.= iA0 for i=0,1,2,...,N-1

Ak= 2Af/c (spatial frequency increments

AO= aspect angle increment.

Then g(ým,) can be written as the following, linear

approximation
k~kB K-1 N-1 $•. ~ ~A-n

g4' em n) =- i 0K 0'
j=0 i=0

Here one is only interested in values of g(Oem ,n over a
discrete angular array of m mAO, m=0,1,...,N-l* The

above equation becomes

gk .Y-41 N-k1- os(i-re)AO

" -NI• °0B 
(4.1.2)

* 3j=0 i=O

Swhere g(m,.n) now denotes g(mn).
Integrating over k first, the expression can be

simplified to

k0 kB N-I sin(rrKk Akcos(i-m)AO)
:g(ms kcos (i-m)Amfn NK sn XOosi~

n

-j2k 9n cos(i-m)Am
0On

If one discretizes k by setting = Sn/k where s is a
n n B

scaling factor k= k0/kB, then
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k k N- sin (rsncos (i-m) AO)
g(m,n) - o0 i sn

sin (r cos(i-m)AO)
K- (4.1.3)

j27rý 0sncos (i-m) Am
.e

:,Where g(m,n) denotes g(Pmkn). The exact equality is used

in Eq. (4.1.3) because g(m,n) is the linear approximation

of g(m

Statement: g(m,n) g(0,n) vm,n

i.e. g(m,n) = g(n) is isotropic

Proof:

k 0 kB K-1 N-1 ej2rk j tn cos im) AD
g(m,n) = NB-

j=0 i=0

I y changing variable, i' =(i-m)

L ii: g(m,n)= e-i](

j=0 V= i'=01

Note that N AO = 2 7; the cyclic property of cos(i'A6) gives

cos (-.Me) =cos ((N-m) Am)

Hence

k k i Kk csWO

•j=l -i'=N-M i'=0

= g(0,n)

__ 9J
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We conclude from the above statement that the

discrete point spread function is isotropic if we

discretize the angle 0 with the same increment Ae and

starting from the same initial angle. Because of this,

the PSF in Eq. (4.1.3) will be plotted in one dimension

only, viz., in the radial dimension n. The figures in

Fig. 4.1.1 are plots of g(0,n) versus n for k0 = lOkB

Figure 4.1.1a is plotted for N = 256, K = 40; Fig. 4.1.1b

Sis plotted for N 512, K = 40; Fig. 4.1.1c is plo~tted for

N = 512, K = 20 except for a change in scale on n.

The most salient difference between the discrete

pupil PSF and the continuous pupil PSF is in the presence

of "periodic" clutters for the discrete case. The
[t

function g(n) is "periodic" in the sense that the

relatively significant values of the function occur at

periodic intervals. Moreover, the period P of such

repetitive structures is approximtely

N IC, (4.1.4)

:The empirical relation in Eq. (4.1.4) also indicates that

the period is independent of the range sampling rate (K).

By doubling N from 256 to 512 while keeping K constant at

40, the "period" of the clutters increases twofold as

shown in Figs. 4.1.la and b. A different kind of clutter

that does not obey Eq. (4.1.4) appears beyond p = 20/kB
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for K =20, N = 512. This fluctuating clutter seems to be

a result of K value because it shifts with I(. Another0

point of interest is that while the peak of the clutter

decreases monotonically with its order, the "width"

increases. In the actual 2-dimensional plots for the PSF,

these clutter will show up as concentric annula rings with

the radii being approximately jN/2 (in k units).

Figures 4.1.1a,b,c also show that the PSF g(n) is

pretty "badly behaved" beyond the first clutter. It also

seems like that the clutters are additive in nature.

Therefore if the PSF for N = 512 is subtracted from the

PSF for N = 256 with K = 40 in both cases, the first

clutter should be pretty well isolated. Figure 4.1.2

shows the differencebetween the two PSF's. Surprizingly

enough, the first clutter does appear to be isolated

:because it looks much more like some "well behaved"

function. Note that p ranges from 0 to 10/kB in this

figure. The peak of the fiirst clutter occurs at about
,• ,p 256-1•

P -- 40.744k-1. As a further illustration, g(n) is
in IVt 0

plotted for the special case in which there is only one

range sample, i.e. K 1. In this case the PSF fcr the

continuous pupil becomes J0 (2Trk 0n). This is shown in

Fig. 4.1.3a. Again notice that the first clutter appears

Sat around P 40.744k 1I This further supports the
0

conjecture that it is caused by azimuth (angle)
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ANGLE SAMPLING N-256

RADIAL SAIPLING Ku40

S- •2N ,.-1

o -. o0

Ni -1

kk

:!! .Loo0 0 p - 10

k13 ka

Figure 4.1.1. PSF of discrete pupil of the imaging system.
(K is the number of radial samples;
N is the number of angular samples,)

(a) K=40, N-256
(b) K-40, N-512
(c) K-20, N=512

<7,
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ANGLE SAMPLING N =512

RADIAL SAMPLING K=40

10 0 10k

I I-I I I I I I I

10 0 _ 
1..0!! I • t

4. I Figure 4.1.1 continued
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ANGLE SAMPLING N=512
RADIAL SAMPLING K=20

k = lOkB

(c)

20 10 0 020
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'Figure 4.1.1 continued

____ ___ _ _ ____ ____ ___74



L

F~~~ --- 10~J5~,~

Fgr e412 Difrneo th Fin ig

I ~ ~ n th PS in Fig 4.1.1b.I I I I



k 0

(a)
so_ _ _ t _ _

ko ko

"Fiur 4.1.3 PSF( f1 .or the discret pupil N=5,K1

!!I-

(a The PSF.(b)Ž~ Th isoate frstan seon

order: clte em optdfomtkn h

a• . .!- 1 a a a J I. 1 _ i a I I 1 _ i I 1. i

+,,.+ •(b)

•'• Figure 4.1.3. PSF for the discrete pupil N=256, K-I.
i•,•(a) The PSF. (b) The isolated first and second
i•, order clutter term cormputed from taking the

difference of two PSF's.
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undersampling. In Fig. 4.1.3b the 1st and 2nd clutter are

obtained as before by taking the difference of two PSF's.F

First clutter e, (n) g(n) -g(n) j (4.1.5)
N=256 1 N=512

r I
Second clutter e2 (n) = g(n) 1 -g(n) 1  (4.1.6)

.Again one sees that the clutter terms are some well

behaved functions. These clues provide us with some

interesting guides into solving the problem analytically.

4.2 Sampling Requirements

We have found some clues in the previous section on

the effect of undersampling in both azimuth and range

dimensions of the PSF. One obvious conclusion from these

is that the sampliny rates are extremely important

parameters for the design of a radar imaging system. Here

we will try to solve the problem of defining what is

considered sufficient sampling and what are the barest

necessary sampling rates so that the data can still be

used to reconstruct the target. 'Ihe importance of this

problem is also underscored by the fact that the

narrowband assumpticn can be relaxed into a full disc

plane and thereby give a concrete understanding to the

polar coordinate sampling requirements in tomographic

systems.
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The key idea here is to 1-D Fourier transform the

data into range profiles which is also called projection

data, and then carry out analysis in that domain. Another

important concept that will be utilized here is the

degrees of freedom (DOF) concept (15].

(A) Range Sampling - Number of Frequency Steps (K)

Since the DFT in the radial frequency dimension is

carried out to convert the data into range profiles (in so

called "projection space"), the DFT property gives the

unambiguous range
I x for K>I.
Lk

For sufficient sampling in radial (range) dimension, the

following criterion must be met.

Criterion 1: The projection data must unambiguously cover

the whole target of maximum extent 2a, i.e.,

K > 2a.
kB

'Hence
Kj >ak

(B) Azimuth Sampling - Aspect Angle Sample (N)

Depending on which aspect of the imaging system we

are emphasizing on, the sampling rate in this dimension is

called different names. For example, the azimuth sampling

rate is represented by the burst rate when the transmitted

signal format is emphasized.
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In section 3.5, it was shown that the maximum Doppler

bandwidth [ i __

k 1- do -2k
dB -2fra dO max d-'mi=2

The maximum change in phase from one range profile to the

next range profile (or called signature) is then

ddO
'Amax dOmaxAO 2  0ak0A (4.2.1)

;For sufficient sampling in the angular (azimuth) dimension

the following criterion must be met.

Criterion 2: The maximum phase change between two

consecutive range profiles (signatures) must be less than
!i IT. i.e.,

II ma-x <

Hence

• , �21Rak 0  2ak"{0
•t•: Sin'e

N 2"•IA0,
•.• IN > 4wak

Therefore

R > 2akB,!. K B (4.2.2)
i"N > 4rako"

0

"Thebe are called the sufficient conditions that must be

satisfied so that the target can be resolved to the beat

resolution achievable with the system without being
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plagued by under sampling effects. They also give

parameters with which preprocessors can be designed to

bring down oversampled rates.

Necessary Condition

Very often, because of practical limitations,

sufficient sampling conditions in Eq. (4.2.2) cannot be

In those cases the question that one needs to ask is

what the necessary sampling rate should be if

* rteconstruction is possible at all.

In general, the maximum unambiguous range is given by

e2 (4.2.3)

Again in general, from Pq. (3.5.2), it can be derived that

With AOQ 2'T/N,

iAO!IA 2wak 0 sinO k-

Using criterion 2 for IAOI- w,

4ri a0 sinO

Hence

0 < sin (4.2.4)

Let
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sin- 1 N
max sin - 4ak (4.2.5)

then the above inequality from criterion 2 becomes

e< (4.2.6)• = max

Therefore suppose that range sampling is sufficient, then

as long as we do not process the echo signal of a point

target a (pO'0) for more than 2 6max across the zero

Doppler aspect angle, the targat rec<:nstruction can be

achieved without azimuth undersampling effects. The zero

Doppler condition occ"- when the aspect angle O =0 and

6 +n. Moreover h• aspect angle extent for

unambiguous DOT phase - 'max in order to

unambiiuous]y r -truct the tac°g.:, ;e use the following

citecion wh" jI c illustrat~c • •lg. 4.2.1.

Criterion 0 c';'- . o. imtion £Z= acosO for

every - ,- . , through the region of

over•,, .. , .. hy :rse two conditions:
< P max

S< 0max.

These criteria can also be rewritten as

0 >[h0max Az (4.2.7)

8where



2a

Omaxt

- j a cos(O-0 0 )
28nax

Figure 4.2.1. k. a cos(6 - €o) is the contour of the signal
from a point target o(a,•o) projected onto the
line-of-sight as it rotates.
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-1
0Az = cos (Pm/a)

= cos (K/2akB)"
A B

on simplification

22
4ak0  2ak) 1 (4.2.8)

which is the necessary condition
Table 4.2.1 Summary of Sampling Requirements in Polar

Coordinates

NECESSARY CONDITION + I

SUFFICIENT CONDITION N >N =4rak0
S 2akB

The necessary and sufficient conditions can easily be

visualized if we plot the constraints in two dimensions.

This is illustrated in Fig. 4.2.2. Note that Eq. (4.2.8)

is in general an ellipse with major (minor) axis NS or Ks.

4.3 Sampling Requirements From the DOF Point of View

(A) Range Sampling

4: •The DOF concept in one dimension is given by the

"time bandwidth product." Hence, for a target of maximum

extent 2a and bandwidth 1 for the transmitted signal,
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K [Oversampled]
Target can be resolved
with maximum (best)
resolution possible.

(NKK

SS

F •Target can be partially
resolved by coherent

i processing.

[Undersampled] I
Target cannot be I

resolved at all by I
coherent processing.

- 2 + ) 2 =

[

NsNNN

1Figure 4.2.2. Regions of (NK) which illustrate the
sampling requirements. N, K are
integers greater than 0.
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the "time bandwidth product"

TBWP = (maximum spatial extent)(signal bandwidth)

= 2akB

= KS

Since the TBWP represents the maximum number of samples of

data that needs to be processed to give one reconstruction

sample point, it also represents a sufficient sampling

condition. Moreover, this number is identical to the

range sampling requirement found from a slightly different

point of view.

(B) Azimuth Sampling

The degrees-of-freedom (DO) is defined as 1151 the

product of the target area with the Fourier domain pupil

area. This number (an integer) represents the total

number of linearly independent samples that can pass

through the imaging system and therefore only DOF number

of samples need be collected to sufficiently reconstruct

the target. For the annula ring pupil,

2Target area ra

Pupil area 2vk k
0OB

Then the DOF of imaging system (ira2) (2vrkOkB

2 2r 2 (akO) (ak )
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The azimuth sampling requirement is

N 2 DOF 2 2 (ak 0) (akB)
TBWP 2(akB
J2a

Therefore a0

2a (4.3.1)N =T 2ak0

for sufficient sampling. Note that with the Doppler

bandwidth approach, the sampling criterion was

NK > 8iT(ak0)(akB) (4.3.2)0i B
and with the DOF approach it was

2NK > 2uT (ak0 ) (akB) (4.3.3)

:which are very close in comparison. They are off only by

.a factor of 4:5.

.4.4 Conclusion

It was shown that the PSF corresponding to the

discretely sampled data in the annula ring pupil function

is different from the ideal Pr?,- .--;responding to the

'continuously sampled data in the same pupil function. The

difference lies in the presence of more or less.

periodically recurring so called clutters along the radial

dimension of the discrete PSP. The seemingly additive
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nature of these clutter functions may provide some clues

to their analytic structure.

Next, it was also shown that by using criteria 1 and

S2, the sufficient sampling requirement was
* K = KS = 2ak

S B
N = NS = 4nak 0.

From criterion 3, thnNnecessary sampling requirement was

(N e) + K 2 1

These sampling conditions were similar to those derived

from the Degrees of Freedom concept which is a completely

different approach.

, ..8
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Chapter 5

ERRORS IN POLAR COORDINATE SAMPLING

In many of the new imaging systems that are arising,

more and more of these seem to collect their data samples

with a polar coordinate format. Most of these systems

involve obtaining projections of the object and

reconstructing the image from these projections. Since

only a finite number of projections can be taken and only

a finite number of samples can be read from each

projection, the polar coordinate sampling format is *built

into" the system. Systems that use polar coordinate

sampling include radio astronomy, electron microscopy,

X-ray tomography, rotationally symmetrical array design,

optical imaging, radar imaging and so on.

The first attempt to estimate the sampling

requirements in polar coordinates appeared in 1967 [5) in

which the maximum linear distance between any two adjacent

samples in the Fourier transform domain was chosen so that

its inverse was greater than the maximum diameter of the

object. This intuitively obtained result was also

discovered in section 4.1. Smith et al. [331 in 1973
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computed the Fourier transform of a 2-D Gaussian function

sampled in polar coordinates. It was found that besides

another Gaussian function that was obtained after the

Fourier transformation, a series of clutter terms

associated with the function also appeared.

The objective of this chapter is to obtain an

analytic expression for the errors or clutters associated

with sampling in polar coordinate format and therefore try

to determine exactly the necessary and sufficient sampling

rate in both azimuth and radial dimensions. Our approach

is as follows. We will sample a disc and an annula ring

pupil in polar coordinates and compute their Fourier

transforms which will be called *discrete" point spread

functions. Since these functions are isotropic, we will

mention the transformation as Fourier Bessel

-transformation. We will apply Poisson's Summation Formula

to compute the discrete point spread function and get an

expression for the difference betwesn the discrete

transform and continuous transform. This difference is

the error associated with the sampling.

One very significant immediate application of the

N .result is on the estimation of the azimuth and radial

sampling intervals for X-ray tomographic systems. For

many practical systems, experimentation was the method

.89
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:used to find an "optimum" number of azimuth samples or

projections. Since each projection exposes the patient

with an extra dose of radiation it is extremely important

to know the minimum number of projections that is needed

to get a reconstruction that is free of sampling errors.

5.1 Poisson's Summation Formula

.1. Fourier's Theorem

Let g(x) be a periodic function with period A', with

at most only a finite number of simple discontinuities

(finite steps). Then for any e>O,

{ 02 r-ge£i g(x+•)+g(x-E) nX

2I ~n-co

whereA
3X gx~e~ nx

Ag 0 g(x)e dx.

This is Fourier's Theorem.

~NA 21=•X

2. Now consider the integral f(x)e dx where f(X)
< J 0

also has only a finite number of simple discontinuities.

j T-nx [aA-x
e(x) e dx= .. + (x)e dx

[oJf 0  N-l)

N- (m+1) A .21T

f x)et dx

i A .- n (t+m,&)

-" ~f(t+mA)e dt

,_. m=0 "0
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p

-- N-1 A .27tN• Inx -11 t -n

f(x)e dx f (t)e dtm=0 0 
(M=1.1

whe:e fm (t) f(mA+t). From Fourier's Theorem,(t-__) 
I _•#^n f•&J- •

(t+__) +fr j Lt A j n-e1
kim m= e fm( e•

C-0 2
n=-• L-10

At t 0, the left hand side is

Sf f+s) +fo (-i')
£i11

2 [f (m.) =f (h14) A))

and the right hand side is

0

Therefore • 2

p bthfsi+fmis o a

where f represents f (0). Summing up both s.des over all

m=O M-10 nz - 0

Substituting Eq. (5.1.1) into the term in the square

btackets,
,,1 

4, tj i

00 L e dx,
Sm=O 0l~J

k:;=,1 ,

91



On simplification,

f f (XWdx e e0 (5.1.2)
M=0 I n-1

NA
where 2•2

e - f(x)cos(- nx)dx
0

This is the Poisson's Summation t mua [5]. It says that

if we approximate an integral f(x)dx with a linear sum
:. 0

of samples, the error incurred will be a (countably)

infinite sum of error terms, the nth order of which being[. 1
en. The residual error tezm ff 0 -fy only depends on the

end points of the function and is usually not

consequential,

5.2 Apcn•lar ja in

""onsidei" the discrete Fourier Bessel transform ,f a

unit circle discretely sampled in azimuth as in Fig. 5.2.

-Letj2coaO

ff•)=e for N,

Let N be an even integer. Since f0 = iN, the residual

term is

(5.2.1)

,using Poi•so&S Summation Formula in Eq. (5.1.2), the

diSctete F.T.
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1N-1 27T 7 2 ~~tpc 21n

i=0 o n=-1 0 (5.2.2)

ej2frpcosO 2-r
Co

J 0 (2Trp) 2en (p)

where n=1

21r

e (P)= 1I e j 2 TrpcosOcos(nNO)de" (5.2.3)
n 'r

From standarci lintegral. tables 1],

*11 nNIT

• ev2IpcO cos(nNO)d0= JnN( 2 Tp)e

Because • even say N 2N',
.nNt

i27r JT2

es 2TrPcOsOcos(nNO)de 1tp)e

Hence

e(P) 2(-l) (2yrp) . (5.2.4)
n JnN "

nN'
Note that if 41N, (-1) is always positive and e (P)

"will always be positive. Finally substituting Eq. (5.2.3)

into Eq. (5.2.2), the discrete Fourier Bessel transform of

a unit circle is

2yt

1-I j2vpc•ja3(1- i)
e =Jo(2irp)+2 1 Jn1(2 u1p)5.2.5)

n=1
i=0
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if we call the left-hand side the Discrete Fourier Bessel

transform of a circular ring, then the first term on the

right-hand side is the continuous Fourier Bessel transform

term while the terms JnN(27rp) in the summation represents

the nth order error due to the discrete approximation.

Properties of JnN(21p)

Since discrete sampling is meaningful only when N is

a large integer, we need only to study the properties of

JnN( 2 •rp) for large orders nN [391.

;. From the properties of Bessel functions of the first

kind and large orders, JnN(z) is negligibly small compared

to its first peak for 0 =: z nN. The value of the first

peak is also the most dominant one. Besides, over that

interval JnN(Z) is a monotonically non-negative increasing

function. We will therefore only be interested in knowing

where the first peak occurs and how significant it is

ccompared to the maximum value of J 0 (2Rp) 1 at p f 0.

This will give us a.concrete method to choose N (or the

angular sampling interval - depending on exactly how

large an error one ccn tolerate on the discrete

approximation.
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Referring to G.N. Watson [39], the first peak: of

JnN( 2Up) for large N occurs at

p P = (--)n+( 0.8086Nl/3 1/3 (523P )n ( 21r )n + (nN) -/ )(5.2.6)

where 0(.) represents the order of the series truncation

error. For large n, Pn is approximately linearly

proportional to n which means that the nth order error

shows up at p %nP where P =N/2T. The series of nth

order error will therefore appear like radially periodic

:cl..ters. In two dimensions, the errors appear as

circular artifacts of radius given by Pn for n = 1,2,3...

T able 5.2.1 shows values of Pn computed foc various

Ivalues of a for N 256. A linear approximation using

only the first term in Eq. (5.2.6) is shown with the

-resulting percentag3 error. Notice that even without the
Slinea- approximation, va1s of P still show that P is

:very closely e-ual to nP but with P 41.00 The radially

"periodic phenomenon and the value Cf the *period" P was

already observed in section 4.1. This observation will be

brought up again when we consider the PSP of the

narrowband pupil.

The last column of Table 5.2.1 shows values of the

ifirst peak of the nth o.aer error term en(P) JnN(21r).

_96



04

04

i' co,.:v .4

a • co co N•
S(,I r l r-4 m q co c

4..i

C1

o p 0000

~ •0 m ••

0

•..-~0 v m:•,.4,Ie

$H

H (1 0 0 0 0 0 N F-

H4 r-4 N HHO

!• 0

04N

0,; '- NCJf

"0 -

Ow a .1N

_ _ _ _ 97.



'For N = 256, the first peak of the first order error

JN(2?P) is 0.211 (-6.76dB). This is a significant value

compared to J 0 (0). If P is the smallest radius of the

first order error term JN( 2 Trp) that can be tolerated and C

is the largest error allowed within the region of

interest, N must be chosen such that

JN(2•Pmin) < 2- (5.2.7)

As an illustration, Fig. 5.2.2a shows J 0 (2,Tp) which

is the exact Fourier Bessel transform of a circle of unit

radius in Fig. 5.2.1.

Figure 5.2.2b shows the discrete Fourier Bessel
-1

Stransform as given in Eq. (5.2.5) for P over (0, 200k 0 ]

where k0  1. Figure 5.2.2c shows the exact Fourier

;Bessel transform and the independent error terms for

in 1,2,3,4.

5.3 Radial Sampling

!A. Over Full Disc Pupil Function

Suppose we have a series of K impulsive concentric

circles shown in Fig. 5.3.1a as pupil function. Let the

pupil function be

K-i

G(k) = Ak 6(k-j~k) (5.3.1)

J=O
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-0.403

p 12.5

(a) The exact transform J (21TP) of a unit eircle.
0

Figure 5.2.2. Fourier Bessel transform of a unit circle
and its angular sampling effects.
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g g(P) JO o(2TrP) + F, %i(P)
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1 0 'AMA~r r;~,I AAA

0 100 01200

(b) The Fourier Bessel transform g(p) of the unit circle
with angular sampling interval 21T/256.

S412

•tA ,

I , , I

(c) The exact transform J (21p) and the independent error
terms due to angular sampling.

Figure 5.2.2 continued 100
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2kB

* I(2K-I) radial samples

V

Radial sampling index j0,1,2,..., K-2, K-1.

Figure 5.3.1. Full disc pupil function, discrete
in radial dimension but continuous in
angular dimension.
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where Ak = k B /K-I. Since this is an isotropic function,

the point spread function is also an isotropic function

given by

g(p) B{G(k)}

21f kG(k)J 0 (27rkp)dk
J0

K-i

S21dk•j J(K2-lkBPj) or (5.3.2)

j=O

j=-K+3.

tHere, two forms of the point spread function have been

presented because depending on the application one or the

other will become more handy to use.

:For our purpose, we will use Eq. (5.3.3). Applying

Poisson's Summation Formula from section 5.1 in a slightly

modified version, it can readily be shown that the PSF of

the multi-circle pupil function isSkB 0 kB

1)kIkIJO(2pk)dk+2v JkJO(2"pk"s K )dk

(5.3.4)
+ 2ivk J0 (2 IfkBP)•
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The First Term

The first term on the right hand side of Eq. (5.3.4)

* is the Fourier Bessel transform of a disc pupil of radius

kB and is given by

kB

B J(2TkBP)

r IklJ 0 (2fpk)dk = k 1 B (5.3.5)
Th B

The first term therefore represents the exact point spread

function of the continuous disc pupil.

The Third Term

The third term represents an additive factor which

modifies the main lobe of the exact point spread function

of the disc pupil.

The Second Term

The second term on the right hand side of Eq. (5.3.4)

represents a series of nth order 'radial sampling clutter"

(391. It is

radial

"sampling en( ) (5.3.6)

clutter n=1
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where

e (p)=2 [!klJ 0 (2Tipk)] [rect-(k/2ki)]cos(27Knk)dk (5.3.7)

is the nth order radial sampling clutter. Equation

(5.3.7) is a cosine transform and the convolution theorem

can be used to study the behavior of en(P). Let

en (p,x)=21 kiJ0 (2Trpk)cos(2irxk)dk (5.3.8)

and define a convolving function

w1 (x) = f rect(k/2kB)cos(2iTxk)dk. (5.3.9)

Let us first find 0n(px). Equation (5.3.8) can be

simplified as

S en(p,x) 4ikJ0 (2,Tpk)cos(27rxk)dk, (5.3.10)n •0

From standard mathematical tables, [Abramowitz, Stegun) (1)

and a little manipulation, it can be shown that

ODITr

-a Cos(-)
kJ (ak)coslbbk) dkb-( + b b>a>O

i!;"0 O<b<a

(5.3.11)
____- -104



which is not defined for b a. By substituting p = 0,

a = 2TrP, b 2nx,

23/2

an(P'x) = 2•o (5.3.12)

Next, wl(x) can be rewritten as

1wl(x) = 2kBsinc(2kBx)

By the convolution theorem

i~I X= k

Hence

)W B x)dx

J B

(5.3.14)
k3/2•B _ sinc(2k -x))dxVP>O.

n(K-1) n(K-1)
w l(-k -x)peaks at x= -k-- while 6n(Ox) blovs up at

I x P. Since P is a moving parameter, we will expect
n(K-1)

en(p) to peakatornearp'-"-- at which point the area of
kB
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overlap is maximal. The convolution process is

illustrated in Fig. 5.3.2.

B. Over Annula Rini Pupil Function

Suppose the annula ring pupil is discretely sampled

in the radial dimension as shown in Fig. 5.3.3. Since the

derivation of e (p,x) is independent of the pupil

function, dn(px) stays the same for the annula ring. But

the convolving function is instead, the sum of the F.T.
iJ

!of two rectangular functions displaced by +k 0 -k 0 from

the origin. It is

k-k 0  k-k
Sw2 (x) {rect(-. +rect (-

13 B

. 2kBsinc(k x)cos(2iyk x)

The nth order clutter for the annula is therefore

On 2X

An interesting result from looking at the radial

sampling iffect on both the full disc pupil and-the annula

ring (bandpass) pupil is that in both cases the radial

samv. ing clutter becomes significant in the vicinity of

n. i (K- '_11The mean frequency of the annula ring does not

play a direct role in determining the position of the

,06



• ,, '-direction of motionof -n.(Px)

di o fstationary

Fiur 53.. onoltonof "e'(p,x) wihw-u

n (K-)
kB
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kB

Figure 5.3.3. An annula ring pupil function, discretely
sampled in radial dimension, but continu, usly
sampled in angular dimension. (K radial samples.)
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clutter. The minute details of the nth order clutter in

* each case will differ since they are determined by their

individual convolving function wi(x). The gross behavior

of the radial sampling clutters is essentially the same

because they share the other common convolving function

Sn(P,x).

The above results are illustrated in Fig. 5.3.4.

Figure 5.3.4a shows the difference between the exact

Fourier Bessel transform and the discrete Fourier Bessel

transform of a circular disc pupil, with K = 20. Figure

5.3.2b shows the ist order radial sampling clutter with a

peak of 0.0875 at p 19.27 P, K-1. Figure 5.3.5a shows

the exact Fourier Bessel transform of an annula ring with

"k lOkB . Figure 5.3.5b shows the Fourier Bessel

transform of the discrete annula pupil. Figure 5.3.5c is

the 'isolated Ist order radial sampling clutter el(P) for

the annula ring pupil. Figure 5.3.5d is a blown up view

of the first order clutter which peaks with a value of

0.023 at P= 19.03 R K-1. Notice the similarities and

difference in the 1st order clutters between the two

systems.

-5.4 Simultineous Radial and Angular Sampling

A •iIn section 5.2 it was shown that the Fourier Bessel

transforms of the angular sampled circle and continuous
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t)



lI ii I i u p l i 1 1 1 1 1

(a)

ps X-I -19
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(b)
19.277

e1 (p) e1 (px) * (2rkB) BC(2kBx)j . 0.1

Pa

00 
=2.5L
"U

Figure 5.3.4. Fourier Bessel transform of a radially sampled
disc function and its sampling effect. (a)Transform
of the disc pupil function of radius k. with K-20
and K-40. (Over the range of P shown n the graph,
the curve for K=40 can be taken as the exact trans-
form.) (b)The first order radial sampling clutterterm, 110
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(b)

-. 25 I I I I I I I I I 1 I I I

0 10 20 "

Figure 5.3.5. Fourier Bessel transform of a radially sampled
annula ring pupil function (k -10k). (a)With K-35,
over the range of 0' shown on tfle graph, it closely
approximates the transform of the continuously

I ~sampled pupil function. (b)With K-~20, the first
order clutter occurs at approximately P= K-1 - 19.
(c), (d) Finer details of the first order clutter.

I(Note the difference between e (P) here and
the e (P) in Fig. 5.3.4b.)

I'•k
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I;,

:circle were related by the following equation.
CO

N-i 2n. N
j21Tpcos (-i) -n

e = J 0 (2Tip)+ T(-i) 2p)

i=0 n=1

Let N-I 27T
G() 2Tk - j2nkpcos (N-iG~(k) = y . eO2 kP.S~

i=O

Then 00 'N

G(k)27TkJ 0 (2fpk)+2frk (-1) JnN (2Trpk) (5.4.1)

n=1

and the PSF corresponding to the both radially and

* angularly sampled discrete pupil as shown in Fig. 5.4.1 is

k K-1

g(p) = B G(kj) (5.4.2)

j=0

where k = km+jAk, Ak kB/(K-l), kmin = 0 for full the

disc pupil, and kmin > 0 for the annula ring pupil. G(k)

can be split up into two terms. In particular

G(k) = G(k) + G2 (k)

where Gl(k) A 2rkJ 0 (27Ipk)
90

and cN

G2 (k) • 2ZJk E (-l) 1 (21pk) (5.4.3)

n=1

G2 (k) is the clutter due to angular sampling called

angular clutter.
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A. Full Disc Pupil

I
kmin = 0, k = kB . The continuous system will

give a PSF k

gc(P) = G(k)dk.

SS0

However, with discrete radial sampling, only the discrete

PS? is available which is given by

k K-i
g(p) = -- N G(k.)K-i j-0

.kB K-I kB K-I

j=0 j=0

(5.4.4)

, ~~Using Poisson's Summation Formula on G~)k k
k 2B

SG(k G(kdk+ 2 ) (k

K-i=0 Jlo k
O1(5.4.5)

k kB

2K(K-) GlBkB)

The first term on the right side of Eq. (5.4.5) is

J- G ((k)dk G2r kJ 0(2k)G mdk

3=0' 0 0 .

.kB J1(2i kBp) (5.4.6)

SI which is the exact PSF desired.

:The second term on the right hand side of Eq. (5.4.5) is

B 1

Gf (kd [f J(2rk
!;0

•"0 01
1 2rkP 546

k

•B -"



kB

(P) 2 Gl(k)cos( mk)dk (5.4.7)

1 m=l1 0

where upon simplification,
kB

em1 () = 4 kJ 0 (2npk)cos( 2 mlk)dk.
0

From Eqs. (5.3.7), (5.3.9), and (5.3.10), one can identify
th

eml(P) as the ml order error corresponding to the error

associated with radial sampling alone, as in Eq. .(5.3.7).

'This term is therefore the clutter of the discrete system

due solely to radial sampling alone. We will call this

the "system radial sampling clutter."

The third term on the right hand side of Eq. (5.4.5) is

Gk(- • 1G1 (kB) = --•J (2rkBp)
2(K-1) 1lB _-i 0O2r BP

Swhich is the residual error term. This term does not

introduce any clutter. It only modifies the exact PSF of

the system.

Next, using Poisson's Summation Formula again on

G2 (k) ,

i-K-1
K-i-Z~w 2 (k)

j=0 (5.4.8)

•:,~~ Tr kBG2(kco

S(k)dk + 2(k)cos( m2
•!•~~ (k•-k +~)d

0M2=0f0
2
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In the same manner as with the function Gl(k), the terms
on the right hand side of Eq. (5.4.8) will be studied

* individually.

ist Term on the Rig Hand Side of Equation (5.4.8)

Since G 2(k) is a linear sum of nth order angular
clutter terms, the first term on the right hand side of
Eq. (5.4.8) is the clutter of the system, due purely to

discrete angular sampling alone; this is called the "sys-

temr angular sampling clutter,* and is equal to

(kB

n(P) G2 (k)dk (5.4.9)
n=l 0

where

•" i-nN k
A(P) =i (12 kn(2Ttpk)dk" 54 0

2J (5.4.10)S10

The nth order angular clutter term A (p) is insignificant
B n

for small p( IpI < 1/k ) because the linear summation
:should approximate the continuous integral well for small

S: p. We know that JnN(Zrp k) is negligibly small for p > 0
until 2Trpk n nN, i.e. when k However, for P

2n~Psmall enough, nN may lie beyond the upper limit k. of
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the integral in Eq. (5.4.10), in which case An(p) ý_ 0.

This situation is depicted in the Fig. 5.4.2. Hence,

:An(P) is not significant until approximately
•I/ " nN

P = (5.4.11)
27rk

B

and the first significant angular clutter will appear at

p• N An (p) peaks at the Ist zero of J nN(2wpk). If

we insist on obtaining an expression for An(p) by carrying

out the integration in Eq. (5.4.10), it can be shown that
(p) - (-)n (INN) (nN+l+2i') Jn(2

(nN'+l+i')(nN'+)1 1
i1=0

by using standard integral tables. This resulting

expression also predicts the same behavior of An(P) as in

expression (5.4.10).

2nd Term on the R Hand Side of Equation (5.4.8)

The second term of: Eq. (5.4.8) is the clutter due to

radial and angular sampling simultaneously. It is

~ (l~lC~ ~ (5.4.12)

m1 n12=

where

k
(B

C (P)=2 kJW (2Trpk)cos(2iT(K-l)m 2 k/kB) dk. (5.4.13)
nm n

2
V. 1 0
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Integration
* interval k.JN(2npk)

0 ~kB)

~n k.. ~N(¶k

2vr p

A (p) 2fka2¶rpk)dk
U

Figure 5.4.2. Integration process for the system angular
sampling clutter A (p). (Over the integration
interval [0,kn], kJn( 21ffk) has very
little.signifdcance until approximately

- The first peak of A (p) occurs at
ý C Pzero of the intogrand kJ(2npk),

i.e. whe• 1

2tpkB - N + 1.86(nN) + 1.03(nN) +

Therefore A (p) becomes most significant when

P Q pn nN /2,vIk.)
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n corresponds to the nth order clutter due to angular

sampling, m 2 corresponds mn2th order clutter due to radial

sampling. If we follow the same line of development as it

was done in section 5.3, C (P) can be rewritten as

k
Cn(P) = J kIkflnN(2ITpk)cos(211Km2 k/kB) dk.

-kB

Again Cnm (P) is a convolution of two functions which are
2

A (cL) ( .4 14

nn(,x) J kI (2TPk) cos (2•xk) dk (5.4.14• = _ IkJnN

kand
nd w3 (x) J cos(2Trxk)dk

• ~-kB

• (5.4.15)

2k sinc(2k x)

such that

A

C nm (0) C (o,x)* w3(x)2m2 (K-1) ( . . 6

'From Eq. (5.3.11)

4 1nN+-( +nN2 for (5.4.1f)

QVIX °Je.
S0 for O<x<p

where C= -

"_120



Figure 5.4.3 shows a plot of Cn(pX) for p = 0.1, n = 1

:and for N = 0,2,4,6,8,10 and 100. Values of larger values

:of N cannot be compuited on the computer (DEC 10) without

arithmetic overflow. But one can see that it does not
A

take N to be too large befcre Cn(p,x) approaches to a

1delta function. Since for most polar coordinate sampling,
2 A

IN is in the order of at least 10 , Cn(P,x) is essentially

la delta function given by
Cn(P,x) A A S(P-x)

where An is some appropriate magnitude. Hence

^ m2 (K-1)
(p) 4Ankk2sinc "kB (P- ] (5.4.18)• n2 kB

Now we can finally say this. By observing the limit

of integration in Eq. (5.4.13), C (p) cannot become
L. nm2

significant until

P = -70 k B for n=l.

By observing Eq. (5.4.18) . Cnm (p) cannot become

I significant until

S0 : (K-l)k1 for m2 =l.

Therefore, the simultaneous sampling cluuier C first
MP 2

becomes significant at

p 1, min(~!L k 1  K-l 1

Tr B (K-)Bk B

This means that by considering the system radlal sampling

_______121



7 C (p,x) 2 kJ (27rpk)cos(2irkx)dx

N=O

N -4

N-0
2 N-10O

N-1 00

0

0.1 0.2 0.3 0.4 0.5

o0.1

2 Figure 544.3. Plot of C (p~x) for u-1. N-mO,2p4,6,v8,1Os1GOO

I and p- .A.
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clutter of Eq. (5.4.7) and system angular sampling clutter

Sof Eq. (5.4.10) independently, we will not have to worry

about the simultaneous sampling clutter C , unless
nm2

- = K-1. When this happens the three component clutters

will be superimposed on top of each other around

p k- = (K-1) k and their sum will determine theSB B

clutter level.

In short, the discrete sampling of a full disc pupil

'function in both the radial and angular dimensions gives a

SPSF which is a composit sum of 5 terms one of which being

:the exact PSF of the continous pupil function. The 5

terms can be listed as follows.

1. Exact PSF: J(2rrkBP)
" B P

12. System radial sampling clutter: 2 er(P)

m=1

* where k
e (P) 47 kJ (2npk)cos(u- mk)dk.

m 0

3. System angular sampling clutter: A (nP)

n=1

;where nNA(P) k1ii k (~2rpk) dk.

z 0

14. Joint radial/angular sampling clutter:
' .,, Cnm(O

m=ln-1 n=3•t123

.. 7z.



kB

where C nm()=2 kJ (2Trpk)cos(27r(K-l)mk/k)dk,knN ( (-)m/B) k

0
C n(p,x)* Wl(X)Ix=m(K-l)/k

W1 (x) = 2kBsin c( 2 kBX)

Cn (p,x) is defined by Eq. (5.4.17).

N' N.
2 l~k2

B5. Residual error term: K-I JO( 2 rkBP)"

'B. Annula Ring Pupil

k. 740, k k +min max min B

Using the above constraints on k and starting from

Eqs. (5.4.2) and (5.4.3), one can go through the same

derivations as in section 5.4A and obtain the following

five components of the Fourier Bessel transform of the

discrete annula ring pupil.

:1. Exact Fourier Bessel transform component:

Jl (2kmaP) J (2rrk P)k J1(~ ma) k 1 mi
kmax _ min (2ki

P P
2. System radial sampling clutter (same as in section

5.3B): 0
Z eml (p)

where

e (P) = (P,x)* w2 (x) Wm(K-l)

X= kB
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2~ [x -p >>
!:t

egm (P,X)=

10 p>x>O

w2 (x) = 2 kBsinc (kBx)cos (2 rk x).

This component is plotted in Figs.5.3.5b and c.

3. System angular sampling clutter (same as in disc
'pupil):

!•!~ A(P)

.. ~n= 11 +k
where 0 +B

A () =(-1)nN' J kJnN(2Tpk) dk.
n 1

This component is considerably different from the full

disc case in section 5.4A. In particular, the integration

interval here is centered at k0 . This is illustrated in

Fig. 5.4.4. Again since kJnN (2 7TPk) first peaks at

approximat.ely
k nN: k = T p .

An(P) does not become significant until
+ 1 k ,nN•,~~ 0+ 1 kB
0 2 B 2rrp

4. Joint radial and angular sampling clutter

SS Cnm2
~2, m2= n=1

!where

C (P) C (0,x)* W2Wnm2  ( (K-) m2

S kBl~B

S....' .... "" •" ' : :• "':." '••': " • ,•':":':' " .". "• ':1 25':



(Integration, knM (2ipk)
interval B =.

nn

2ir• nN

Figure 5.4.4. Integration interval for the
annula ring case.
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w2 (X) = 2kBsinc (kBx)cos (2Tk x).

;Again like in the case of the disc pupil P) does not
become significant until

,p P Min{N ,k 0+ 1 kB-' tKI)kBI .

5. Residual error term

:-•- [k2 J0(2k ) -k inJ0 (27rkmP)]
|K-1 max 0 kmax Mn0 i

The most important contrast between the disc and
annula ring case is on the angular sampling clutter term

SAn(p) and on the convolving functions wl(x) and w2 (x) for
the radial sampling clutter em (P). For the disc case

An(P) is insignificant until p1 kl while for the annula
ring case An(P) is insignificant until p"' (k 0ekB) -.

wl(x) for the disc pupil is 1/2k "wide" but w2 (x) for1 ~B2
the annula ring pupil is I/kB "wide" and is modulated by

a sinusoid of frequency k0 I Other than this, the two

Ssystems have espentially the same general features. For
convenience of reference, Table 5.4.1 shows the components
of the Fourier Bessul transform of the two discrete pupil

functions.

'5.5 Conclusion

We bave found exact analytic expressions for the
'artifacts that are generated by Fourier transforming a
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polar coordinate sampled disc and annula ring pupil

functions. This Fourier transform is therefore the point

spread function of the corresponding imaging system which

collects discrete samples of data in the Fourier transform

domain. We have called these artifacts as clutters. The

clutter terms can in general be put into three categories,

viz.

1. Radial sampling clutter

2. Angular sampling clutter

3. Simultaneous sampling clutter

It turns out that the simultaneous sampling clutter does

not become significant before either the radial sampling

clutter or the angular sampling clutter does. A special

case arises when

N = 2n(K-l) for disc pupil and

N 27T(K-1)(k0+Ik for annula ring pupil

in which case all three components become significant

simultaneously and henceforth their summation (joint

clutter) must be considered. Otherwise, the radial and

;the angular sampling clutter can be considered

independently.

Using the analytic expressions obtained for the

;clutters one can choose N and/or K exactly, given the

129
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level of clutter that can be tolerated and the maximum

diameter of the spatial region of interest. It is also

found that both radial and angular sampling create

artifacts that are isotropic in nature.

Finally, it is expected that a sampling theorem can

be arrived at for polar coordinate sampling by extending

the analysis to general 2-dimensional objects. It is also

noted that if the first and the last radial sample is

weighted by 0.5 in the (discrete) summations with respect

to index j, the residual sampling error term will

disappear.
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Chapter 6

RECONSTRUCTION METHODS

In Chapter 2 it was shown that the signal data D(O,k)

represented the two dimensional Fourier transform Z(e,k)

of the target "reflectivity" function O(ý,j) if the target

points were visible over the complete set of aspect angles

(i.e. no shadowing) and if o(•,•) was constant over the

entire range of aspect angles of interest (i.e. no

"reflectivity" change.) Reflectivity change problem will

'be considered as perturbation from the ideal situation,

:and will be considered later. Our reconstruction

algorithms will be based on the above assumptions and

j result. Some more important assumptions are that the

target rotation rate and the range of its center of

rotation are known exactly. These may be unrealistic, but

corrections can be made. Such corrections belong to the

realm of motion compensation. Also, the collected data is

narrowband in nature.

IV Reconstruction algorithms based on the above

assumptions have been proposed but none seem to make use

of the full potential resolution digitally. The optical
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Simplementation of the high resolution reconstruction

problem was achieved by J.L. Walker [37] by recording the

data on a film in what is called the polar format. Here

!we are concerned with digital reconstruction and the

:problems associated with it.

The basic problem of reconstructing rotating targets

is that of implementing the discrete version of the

inverse transform relationship

kmax

a y) k kD(6,k)e- J 2 tk(xcosO+ysinO)dkd0"(6 0 1 )

min

Here we have implicitly assumed that 3600 of data were

available. The amount of data involved is usually so

large that it poses a formidable computational and storage

problem. Morcover, in practice the data is discretely

sampled in azimuth and range, so that some form of

* interpolation will be needed somewhere in the

reconstruction algorithm; for complex data, this becomes

difficult problem.

Radar reconstruction techniques for rotating targc.s

!can be classified as coherent processing, incol-e.ewc

processing, and mixed processing. The way these are

described here can be applied to both optical and digital

processing, even though some aspects of the techniques may
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be more difficult to implement optically than digitally.

i P 6.1 Coherent Processing

Suppose we are given the target data D(O,k) for

aspect angles within the range [ min, max] over the

spatial frequency [kmin'kmax].

The reconstruction algorithm that makes use of the

full Doppler frequency extent available in the data is

called coherent processing. In effect, this means that

the target reflectivity function is computed by the

approximation

max max

(,kD(O,k)e- J•(•cosO+nsin0)dkdO.

k
8min min

Coherent processing amounts to implementing this equation

in one form or another.

For most angularly symmetrical targets, the Fourier

transform relationship is accurate enough to give good

reconstructions since there will be minimal amount of

shadowing and the target points will show the same

reflectivity. J.L. Walker domonstrdted this technique

optically for either a collection of small point targets

;or a cylindrical object which is angularly symmetrical on

the plane of rotation. For more realistic targets,
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artifacts arising from shadowing and changing reflectivity

will become significant problems.

The coherent processing technique can be understood

if we implement Eq. (6.1.1) by integrating over frequency

k first (range compression), and then contour integrate

with respect to azimuth angle 0 . This was suggested in

Chapter 3 as follows.
1fkB
(2 B

iigR(0,2)= D (0 'k-k0) eJ 2 rdk
RC 3 0 (6.1.2)

2B

ak01 max £0e-2liko£

a(Z k0j e OZ.dO. (6.1.3),RC 0,
0.rain

since we integrate gR• over
it CcosO+,nsin0

[mil ,0max to

get the image, the exponential term in Eq. (6.1.3)

represents coherent phase compensation on each range

compressed data point gRC(O,.o) and the entire integral

represents what is called azimuth compression.

ýEqs. (6.1.2) and (6.1.3) together def4tne the target

reconstruction algorithm by coherent processing.

The physical interpretation of range compression is

well understood ISkolnik]132]. From the signal processing

point of view, consider a stationary point target
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reflecting a continuous electromagnetic wave of effective

spatial frequency k(=2/X). At this frequency the phase of

the return signal is

D(k) = 27Tkk (6.1.4a)

where k is the distance along the ]ine-of-sight of the

point reflector from the antenna. The phase of the echo

tis a linear function of k as depicted in Fig. 6.1.1a. If

Swe take k as a variable ard regard £ .as the "frequency"

'with respect to that variable, then Fourier transforming

the echo signals will give us a "sinc" function which

peaks at a "frequency" equal to k ; the point target

;distance Z can now be estimated. This process is called

range compression and it is depicted in Fig. 6.1.1(b)

which shows the compressed data.

The physical interpretation of azimuth compression as

repL •sented in Eq. (6.1.3) can also be understood by

noting that after range compression, the azimuth phase

. J¢(Q) and hence the Doppler is determined by the mean

,ftequency k 0 and the distance £= 2. " This azimuth phase

is illustrated in Fig. 6.1.2.

¢(0) = 2tr k 21r (6.1.4t)

,where

r0 = distance between, radar antenna and target center
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Phase of echo from Range compressed
point target echo

F.T.

distance
from
antenna

k k (frequency) 0 /

(a) (b)

Figure 6.1.1. Lingo compression for MFS radair.
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Aspect Aspect
* angle q angle 8

*+ý+1r

* ignal Doppler
phase O(O) frequency

- -

Center Zivk p ( range) dO~

Srotation

*(a) (b)

"Figure 6.1.2. Phase and Doppler vs. aspect angle
for point target at (,p).

.Ji. 137



of rotation,

ke =Ccose+nsinO

The first term in the phase is constant. The second term

is linear in Z but not linear in 0, so that the Fourier

transformation prescription will not apply. Instead,

using a matched filter matched in phase with e-j(), one

gets e
max

_j.
y o(,)= RC (O,k a) e-J dO.

6
min

By substituting 0(8) into the above equation, it will

:become Eq. (6.1.3) except for a complex constant factor
e3 2 Tr 0 k0

k 0 e

The Doppler time frequency can be obtained from the

equation

d d dt(e)

;where

w rate of rotation

df angular Doppler - -( 0) determined by k and the
at 0

target coordinates.

In this form it becomes explicitly clear that the Doppler

and hence the imaging property come as a result of target

rotation,
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Equations (6.1.2) and (6.1.3) are difficult to

implement digitally because of the large number of

computations they demand. Coherent processing can be

:implemented by segmenting the frequency plane into

* rectangular (or square) blocks, applying the the FFT on

each block and coherently superimposing each block image.

Because the data in the frequency plane are sampled in

:polar coordinates, interpolation will be required before

the FFT can be applied. More importantly, most of the

blocks will contain empty data. This unnecessarily

increases the memory and computational requirement. Also,

because the data are collected in azimuth sequence (one

signature at a time), memory addressing will become very

unwieldy. A different method of implementing coherent

processing techniques can be developed.

Suppose we partition the [Omin o azimuth extent

of the data into NS equal segments of azimuth width OW.

lFor convenience let 0 0 and 0 21r. Then each

segment will be

radians wide. How 0 and hence N are chosen will be
w S

mentioned later. Let us define (as illustrated in

Fig. 6.1.3a

th0 0n = new =Azimuth angle center of the n segment.
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S~(a)

Rotation of axes

kx
i., X

oon

Figure 6.1.3. Angular (azimuth) partitioning of the radar

data and the change in variables in coherent
processing and mixed processing methods.



n
Sn {(0k)I0 n- 20W,0 + 0W (k ,k
n , f Omin' max

:The target reflectivity function from Eq. (6.1.1) is
a(,)= O,k)e2kcnd0dk

jkD( 21Tk Ucos0+Yisin0)

fo0
NS-

= • ;• kD(O,k)e$2'k( cOs0+fsinl) d~dk

n=0 S
(6.1.5)

=D(O,k)e j21k(ýcos0+nsin6) dOdk.

n
' Substitute 0 - nO +a and make the following change of

variables
k= k-k 0

cy k0

:so that a= k./k0 and k 0 da dky. Then

D (k ,ky) D(6,k)

where for convenience we have interchanged the variables.

ThenN1

Then~~ (,)D(k k )expjj21T~ko+kX)

•!n=0 n

*1~l : ~cos (n0w+ )+nsin(n0w+k )I( dk dky (6.1.6)
Sx

k 14
!il. I n • ,n)(6 .1i .7 )

i--
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where In(ý,n) is the integral in Eq. (6.1.6). By the

rotation of axes as in Fig. 6.1.3b.

x = ýcos(nQw)+nsin(nOW)
(6.1.8)

y = -ýsin(nOW)+flcos(nOW)

Ak k

a 72 (k 0+k ) xcOs ( k ) +ysin( k-
In x )= D(k y dkxdk (6.1.9)

y
n

In(Er1) is the reconstruction from each segment, rotated

by noW. Suppose 9W is sufficiently small so that one can

make the approximations

k k
cos( ) ) 1-

k k (6.1.10)• si n (ko0) = (A•0

0 0

ion the phase of the kernel in Eq. (6.1.9). Then

,I (• i)=ff D (kx k )e32h1 dk dkySn ff n

S
n

where

yk k xk2 xk k2

xk+ yk+Xk+ - 2k (6.1.11)
Sy 0 k0 2k

0 0 0

By keeping only the first three terms, one can further

approximate I ((,r) by defining
n
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S~j2T (Xk +yky
. ,r 1)A Dn(kx,ky)e X dkxdky (6.1.12)

n ff n xy x y
Sn

such that

j2l k x
en (6.1.13)

'n(•,n) now represents the 2-D Fourier transform of the

nth segment and then rotated through nW by Eq. (6.1.8).

Hence

N-I.

S 0J27rk0(c°SnOw.1 +r)sin nOw) , ) 1

O(CF ) "i e (ý,n) (6.1.14)

n=O

Therefore, the target reconstruction algorithm involves
taking the 2-D Fourier transform of each of the N

segments, rotating them by their corresponding mean angle

"nOw, and then coherently summed according to Eq. (6.1.14).

It is. not necessary co rotate the axes after Fourier

transforming each segment. ' (•,n) can be obtained by
n

first rotating the axes in the frequency plane of each

segment and then carrying out the Fourier transform.

However, because the phase of the target reflectivity

ro(•,1) can change drastically from one range cell to

another, or from one cross-range cell to the next,

:rotation of axes is recommended only in the frequency
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plane where phase coherency is better preserved.

This method of implementation allows the use of the

FET and at the same time uses the minimal amount of

memory.

Equation (6.1.14) can also have the following

interpretation. It simply means splitting the integration

interval of the contour integral Eq. (6.1.3) into N small

segments, with each angular segment being so smpll that

the curved contour in each segment can be approximated as

.a linear contour. At the same time, each segment is also

small enough so that the contour within that segment does

not migrate in down range (x-dimension) for more than one

range cell width. The former limiting criterion is

described in practice as "range dependent azimuth focus

error" and the latter limiting criterion is described as

the "range-walking" error. Both of these are described

below.

Equation (6.1.14) was derived by making

approximations in three different places:

1. no range curvature within target space,

2. narrowband assumption,

3. truncated Taylor's series expansion of

Eq. (6.1.10).
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"The last approximation poses the most serious

limitation. Two most significant aberrations are caused

:by neglecting the quadratic phases in Taylor's expansion.

They are
= 27Tykykx/k0"

which causes "range walking"* and

•2 = -2nxk 2 /2k 0

which causes what is called a "variable range rate" or

"i"changing Doppler" or "range dependent azimuth focus

:error." 0  This is a classical problem in the processing of

Strip mode SAR and is dealt with in detail by Leith, and

Brown. The quadratic phases i1 and ¢2 can be dropped if

;they change less than 7/2 over each processing aperture

SSn Therefore, for negligible "range walking", IAtl=< Tr/2,

and negligible "variable range rate", jAý2  <ir/2. By

applying the substitutions

j~k =1 kJfy ~*W~

IAk~ I k
213

;* *INote that *I 21x'kx where x' yk After range
compression, the range of 3 point wil be shifted by x'
which is dependent upon the azimuth distance y.

ONote that 02 = -irk /XF where Fy is the azimuth focal
length. F changes wit range x.

y

145
-*•---I



and lAx! lAy! = a, one can show that
2

W -ak (6.1.15)

for negligible range walking and

6W 2 (6.1.16)

for negligible variable azimuth defocus blur. In

;practice, for example in Spotlight SAR, OW is chosen such

that range migration is less than 0.3 range bin width to

avoid image degradation [6]. As an example, let
•-l -1

k 200a , k0 = l0a in normalized units. Then

8 :S 0.1 rad 5.730 for negligible range walking,

< 0O 0.1 rad = 5.73 for negligible variable azimuth
W

defocus blur. For those particular values of ko,k , both• B

limitations are the same. But for larger kB (say

kB 0.1k0 ), range walking becomes the limiting factor on

the segment width 0w and for smaller k, , the variable

azimuth defocus blur becomes the limiting factor on OW.

The narrowband assumption is common to both the mixed

processing technique and the coherent processing

Mixed processing technique is described in Section 6.3.
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technique. It affects the coherent processing technique

imore significantly because the "bandwidth" (k max-k rain

determines the sidelobe levels of the PSF, as was

discussed before.

Only the range curvature approximation is common to

all three processing techniques. For airborne targets,

this approximation is accurate even when the best

resolution is achieved with the coherent processing

technique. But for ground mapping purposes, like 'in the

icase of the Spotlight SAR, range curvature ultimately

determines the best achievable resolution. Based on this,

the best possible resolution that is possible is given by

=a (6.1.17)

where a maximum radial extent of the target

Ir0  antenna - center of rotation distance

wean spatial frequency

which was derived by J.L. Walker.

For example with k0 =200a-, kB = i0a- 1 , 0W 5.73°

for both negligible range walk and variable range rate

aberrations. The re!solution of this system is limited to

approximately l/ko'•w -

For the case when 0 = 2t, 0 = 0, the point
max mini
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spread function for the coherent processing technique is

the point spread function of the system. This was derived

earlier as
J (21TrkP) J (21Tk 1 P)

PSF(p) k - kmin

6.2 Incoherent Processing

In conventional tracking radar systems, the Doppler

"phase information is usually lost at the output end.

However, one might be able to reconstruct the target

without Doppler phase at all. In contrast to coherent

processing, a reconstruction algorithm which does not make

use of the angle-to-angle Doppler phase variation of the

echo is called incoherent processing, For this processing

method the magnitude of range compressed data is assumed

to be available. How the range compressed data is

obtained does not matter at all.

From section 6.1 the range compressed data (range .

profile) is

(0,i) kd2g•O.0o 1 1
gRC(0,X) =kB 1(gr (0,L)a )(sinc(kB 0)J (6.2.1)

where g r(0, is the true projection. Again we let

b(O,k) =2-D Fourier Transform of a(E,n)
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where a I{.} represents a one dimensional Fourier

transformation. Suppose we approximate the projection of

t the target on to the line-of-sight by IgRC(e,)l 2, with

G(O,k)=A 3I {JgRC(O,-)21 (6.2.2)

By the back projection theorem, G(O,k) is the spectrum of

:a hypothetical real object. The approximate magnitude of

;the target reflectivity function can therefore be obtained

by 2-D Fourier transforming G( 3 ,k) . The square of the

magnitude of each range profile has been taken as

representing the target's projection onto the

line-of-sight because it is mathematically more tractable.

In the SAR signal processing sense it is called incoherent

processing.

Substituting Eq. (6.2.1) into Eq. (6.2.2) and using

Appendix 6A

G(O,k) D [O(O,k -(u-k 0 j)D(U,-(u-k 0])]

[rect -k-- urect( ) au.

Then one can write

G(O,k)= (D(O,k-[u-k 0 ])D(0,-fu-k 0] ) du (6.2.3)
0
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where 0 area of overlap between rect(k-u) and
B

rect(u/kB ). The area of overlap is zero when Ik > kB

Hence G(O,k)=O for Ikl a> k which means that G(O,k) is a

bandlimited spectrum with maximum spatial frequency

component kB . The correlation process in Eq. (6.2.3) is

illustrated in Fig. 6.2.1.

The point spread function can be derived by

substituting D(Q,k) = 1 in Eq. (6.2.3).

G(8,k) fdu

Hence

B

where 11I -~~
AWx)

0i otherwise.

The point spread function is therefore

S2,,
PSF(p,):. kA(-1 ej2nkpcos (6-) dkdO

By carrying out the resulting Fourier Bessel (or Hankel)

transformation (Appendix 6B1,

•,rkp PSF(PO)= Bk "- - .... . .. (6.2.7)

P j=1

where
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II

D~e~k)
I

k

D(O, k-u-ko)-(, u-k

-k-00

(a)

a G(o~k)G(i)G(O,k) is 11eoritian

therefore
S2D(G(O,k)) is real

k

(b)

Figure 6.2.1. The correlation process of Eq. (6.2.3)
for the incoherent PSF. (a) The correlation
process. (b) The resulting PSF of the

. incoherent processing technique.
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F _- 2j+l3 11
(j+ 3 (j+ •) (j_ )

The values of the coefficients c. drop rapidly with j andJ

a good approximation of the point spread function can be

made by using up to only 5 terms in the expansion. The

following are the first five values of cj: 0.400,

0.095, 0.044, 0.026, 0.017.

The PSF of a full disc pupil of radius kB is
J (2lkBP)

kB . This would have been the PSF of thepP
system had the true projection g (0,Z) of the target been

available. If it were available, the system becomes

identical to a parallel ray tomographic system. Since we
2

only have , the actual PSF will be different.
2

Because IgRc(0,i)2 is a real function, reconstruction

algorithms for tomographic systems can be used to

reconstruct the target. The PSF of such a system is shown

in Fig. 6.2.2 by plotting Eq. (6.2.7) and the

corresponding PSF of a full disc pupil function is also

plotted to show the difference.

The resolution of this incoherent system is

essentially determined by 1/ 2 kB which is much worse than

the resolution of I/k 0 theoretically achievable with the

coherent processing technique.

._ 
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Figure 6.2.2. Point spread functions of a disc pupil
function and a conical pupil function. i{.}
represents a Fourier Bessel transform or

Hankel transform.
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6.3 Mixed Possin

If Eq. (6.1.14) is replaced by an incoherent

summation, we will have what we call "mixed processing" as

follows:
NS-I

S 2
o(•,nj) • I~n(•'n)I {"(6.3.1)

n1=0

Therefore another way to reconstruct the target is to

;partition the data into N segments again. Each segment

can be processed coherently and the magnitude of the

results can be spatially rotated, interpolated, and summed

up incoherently. Because of this the processing technique

is called mixed processing. This method was used by Chen

til]. The width 0W of each segment of the data is

subject to the same inequality as for the coherent

processing case namely Eqs. (6.2.14) and (6.2.15).

The point spread function of each image frame is

closely approximated by

Swk 0 k Bsinc (kx) silc(Owk0 Y)

where x is the down-range dimension (along the

line-of-sight) and y is the cross-range dimension. The

point spread function for the mixed processing technique

is therefore a superposition of the point spread functions

of the N image frames. The resulting point spread
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function is essentially given by
PSF(p) =0 k k sinc(kmp)

w 0 Bsickp
where km = min(kB ,0wko). The mixed processing technique

has a resolution not better than one can expect from each

segment reconstruction. But because of the shadowing

problem in real objects, the incoherent summation in

Eq. (6.3.1) serves to fill up the target space with points

that cannot be seen from just one segment t-lone. Besides,

the signal - to - noise ratio also improves with the

summation.

Figure 6.3.1 gives a plot of the point-spread

functions corresponding to the coherent processing

technique and the mixed processing technique. An Airy

function which corresoonds to a full disc pupil function

of radius kB is also plotted to serve as a contrast to

the incoherent processing point spread function.

6.4 Digital Implementation

Digital processing is in most ways more practical

than optical processing. For a list of the pros and cons

see [3],[37]. Because it is now possible to make fast

enough CCD correlators [2], real time digital processing

becomes feasible. For this reason only digital

implementation methods will be considered.
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Coherent Processing

Incoherent Processing

Mixed Processing

S- /0~{ circ (klkB)} -

-6.5k- 0 6,5 1

Figure 6.3.1. Plots of magnitudes of point spread
functions related to the three processing
techniques. (i(circ(k/k )) is plotted as
a comparison to the incoherent processing

case.)
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1i. Coherent Processing

S6 A discrete version of Eq. (6.1.2) must be used for

digital processing. Let range compressed data be
.2•

K-I j np

I g~c(in) = . D(i,p)e (6.4.1)

p =0

where i =

Sn = 0 ,1 ,2 ,....,K -In i n

gRc(i,n) =gRC( 2n kBB
n B

C and D(i,p) = D(- 2n, kmi+ P k

To compute o(,n) we use a discrete version of

Eq. (6.1.3):
f! ' kN-I

k ~ j21vka n) We kmin i
P( = (6.4.2a)

tNI i=O

where

: g Wci =interpolated value of gRC(0= 2n,

i (--n i) + nsin(-L i). (6.4.2b)

If the data is undersampled in azimuth, Eq. (6.4.2)

can be modified so that for each point ( n' n) being

considered only the range profiles 9RC ( that correspond

to azimuth angles in U¢ +0c) will be integrated.
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=tan

Sc =azimuth coherence interval

< .- 1l644sin (i/2AOak 0 ) (6.4.4)
27T

where A= azimuth sampling interval =
AN

This way high Doppler regions are avoided. In this case

21Ti~kt \ -j 2rk mini k- N-4.
j RC(i)e rect (6.4,5)

i=0 c

If the range sampling rate is not sufficiently high, we

can also use Eq. (6.4.5) but with

< Cos- ( K
C Ba

The point spread function for this modified algorithm
;-"• is

k

if max 0,0r +¶

PSF(P) k rect( 2 -)+rect( ý1L J(6.4.6)
•a -U amn c

kC•:Mi 2itkpos (O-ý& )d d
e dOdk-

The constant 1/4k0 k k has been chosen so that

PSF(O) 1. From Appendix 6C#

max
PSF(p) 2k (2nkp)dk

, '-min
nunO

+1 'sin c maxi:•ii" I k-•B (-lnsic(kJn (21tk)dk

n=1 ki (6.4.7)

'The first integral in Eq. (6.4.7) is the original point

spread function for the unmodified coherent processing
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case. The integral in the weighted sum has the same form

i as the n order azimuth sampling clutter An(p) for N = 2.

An(P) has a "main lobe" which peaks in the vicinity of

n
p =•-jma' Therefore the weighted sum in Eq. (6.4.7) can be

ax
interpreted as the term that decreases the "sharpness" of

the original point spread function.

Figure 6.4.1 shows the point spread functions for the
coherent processing case with modified and unmodified

Fl0algorithms. A coherence interval of 6 = 60 was

arbitrarily chosen to illustrate modified algorithm. For

computation, a simpler form of Eq. (6.4.6) exists by using

the relationship in pp. 430 of (51.

The PSF can also be written in the form

PSF(p) X 2()dO
C 0

where
X•0) =21k xsinc(2k aPC0s0)--k sin c(ne2k i Pe°SO]

ii• - k~~~Maxin (MaxP S -k2'I sn2(minP°]"
2 2= 2[k sinc(2 pcos0)-k Sinc (2k iPCOSO)

maxWinml

Figure 6.4.2 shows the half-power (3dB) width PlIp Of the

envelope of the point spread functions as a function of

the azimuth coherence interval . Twice the value of p: ~C •

when the magnitude square is equal to 0.5 is taken to be

the half power width Pp of the point spread function.
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Figure 6.4.1. Magnitudc of point s read functions with
coheroence intervals 60° anid 180 . These are
"normalized such that the total emargy is unity.
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Figure 6.4,2. Variation of the halfE p~owe (3dB)
w.idth of tho j 6t~ preadt functiota witil

cohereuee angle Or
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jHP is taken as a measure of resolution because of

convenience and because it gives a reasonably good

relative comparison of the resolution for various

coherence angles ec. The resolution stays about the same

0 0for ec <30 and c >100°. Therefore, in designing the

radar imaging system one may want to choose 0 to be not
c

more than 1000 because beyond that the law of diminishing

returns takes over.

In choosing the actual computational algorithm, the

batch-by-.batch pt )cessing idea that led us to Eq. (6.1.14)

is most attractive in both speed and storage because of

the applicability of the FFT. Even in the case where the

data are undersampled in azimuth, this batch-by- batch

processing idea can be applied to the modified coherent

processing technique by quantizing o so that 0 is equal

to an integral multiple of 01 Moreover, when speed is a

crucial factor, one can apply the FFT on the initial

segment of the data to obtain low resolution image frames

and make initial assessments. As the target rotates

through wider angles, the subsequent image frames can be

rotated and coherently superimposed on the initial image I

frame to get better resolution. Because of the sequential

nature in which the lumps of data are being processed,

*lumped" pipeline architecture can potentially further

speed up the processing time. Equation (6.1.14) therefore
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:represents a very practical algorithm.

Since we are interested more in the high resolution

capability of the coherent processing technique, we will

use the more easily implemented algorithm of range

compression and contour integration as represented in

Eqs. (6.4.1) and (6.4.2), respectively. One can think of

the integration process of Eq. (6.4.2a) as spreading out

;the image information in each range profile onto the

entire image. With the modified coherent processing case,

an extra step is added. For a given range profile index

i, expression (6.4.8) is added onto the image point (Q,T)

only if either

I- -tan (/) •
!orr 1 1

OL--i -tan-1 1w/1)- 0

2. Incoherent Processing

Tomographic reconstruction schemes can be exploited

to reconstruct the target. Many different tomographic

computer reconstruction algorithms exist and they can, in

general, be categorized into those which process in the

spatiet domain (e.g. convolution-back-projection

algorithm (5], [27]) and those which process in the

Fourier transform domain ([5], (301). For a review on

these algorithms see (29],[181.



The sampling requirement in azimuth and range is much

less severe than that for the coherent processing

technique. If the data is oversampled in azimuth, a

processor which acts like a"fast-in/slow-out" filter may

become necessary to azimuth-wise resample the data to the

proper sampling rate.

For the sole purpose of illustrating this processing

technique and for the reason of availability, we will use

the Shepp and Logan [30] reconstruction algorithm to

incoherently reconstruct the target.

3. Mixed Processing

Two-dimensional FFT techniques can be applied to

each azimuth segment to get an image frame. Since only

the magnitude of the resulting image frames are used,

standard interpolation schemes can be used to rotate the

iimage frames. The digital implementation of these

techniques is expounded in detail in (10].
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APPENDIX 6A

Statement UlD{lx(t),h(t)l2} [X(f-u)X(-u)][H(f-u)H(-u)]du

Proof Let y(t) = x(t)*h(t)

Y(f) = 3iD{Y(t)}

iDSX(f) a liofX(t)}

H(f) = 3I{h(t)}
1D

Then Y(f) = X(f)H(f)

Dx(t)*h(t) 12}= Uo {Y(t)y*(t)}
1D 1D

= Y(f)*Y*((-f) (5A-1)

= (f-u) Y(-u) du

Using Eq. (5A-1) 0

=3 [X(f-u)X(-u)] [((f-u)Hi(-u)du.

This is a different version of the autocorrelation

theorem.
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APPENDIX 6B

Iki k

G(olk) A(k/k B B

10 otherwise.

Suppose G(O,k) is a pupil function. Then the

corresponding point spread function is given by the

Fourier transform of G(O,k). The Fourier transform of

G(e,k) becomes a Fourier Bessel transform (also called

Hankel transform) when G(O,k) is independent of 0. The

point spread function is therefore

= 21r kA( )J 0 (2¶pk)dk
B

= A(p)-B(p)

iwhere
fB

A(p) 27 kJ0127rpk)dk
0

JB (2 7rkBP)

kB P

and B
27) 2

B(p) = k 0
B

'From Abramowitz and Stegun, pp. 480, Eq. (11.1.1),

3 10"" 0 (t)dt = (z) - 4ijl
•,10 °Oj=l

< where
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c o2j+22jil for j >1

Then = (j+ -) (j+ 1)j- •1.
Then

kB

2rr 2rrpk

t 2 J 0 (t)dt
(2np) k Bo

=~k Jl 2~kP)- 1  Jjl (2rrkBP)

T. 1kB2 J (2kBP) 4kBZcj 2j+1 BP )

SP j;=l

The point spread function is therefore

PSF(p) = A(p) - B(p)

- _ J( 2 T~kBP) (2r B_______1 k kBBCj J2j+I( 2lkBP)
'Y P jl P

3B j=l

Each kth term in the series can be expanded in series form

J 2 j+1 (21TkBP) __ 2j+1 2j ((27pk
B n, 4 (2jL+2 +n)

SP n=O
which shows that it converges to 0 as p-0. Therefore we

do not have any singularity problem with the series.
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APPENDIX 6C

The point spread function for the modified algorithm

in the coherent case of Chapter 6 section 4 is
k

I maxkr - - ]

PSF (p)k rect( ( ) + rect(1511 PSFp) 20kB -k.c c
20 m1 n mi (6c.1)

j2upkcos(O-C )

The constant 1/20 c kk0 has been chosen so that

PSF(O) = 1. At the same time it turns out from Parseval's

'Theorem that
( 2

2-rj IPSF(p)I pdp = 1.
I• 0

Let c =0- Using the Bessel function expansion

!formulae (9.1.44) and (9.1.45) of (1i,

2 2rrk pcosan
e - J 0 (2irkp)+2 (j) J n (2Iykp)cos(na). (6c.2)

in=1

Also,

nO
00!;• 220 sinc(-,1) n even

Jrect (- ) +rect (a+T)- osnada= (5c. 3)_. c10 n odd
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With a change in variable from 0 to a , substituting

Eq. (6c.2) into Eq. (6c.1) and using the result in

P Eq. (6c.3),
k

max

PSF(p) = k1Bk kJ 0 (2Trkp)dk

min
S

k (6c.4)
ne max

+ kkB -) nsinc ( m kJ 0 (2nkp)dk
n=1 km

min

The last integral has the same form as tUe angular

sampling error terms derived in Chapter 5.

1.

i?4-Ci

(i

!!!a

f , -a,"• :1 6 9



Chapter 7

SOME PRACTICAL CONSIDERATIONS AND EXPERIMENTAL RESULTS

7.1 RAT SCAT (RAdar Target SCATtering site) Data

Two sets of data were collected on an experimental

RCS measuring facility called the RAT SCAT located near

Holloman AFB, New Mexico. A model F102 plane was used as

the target and was mounted on top of a rotating turntable.

Because of the operational difficulty in maintaining a

coherent signal, a reference sphere located close to the

'line-of-sight between the turntable and the radar antenna

was used to generate the reference signal. The recording

geometry is described in Fig. 7.1.1.

The reference sphere S had a small diameter compared

'to the target size and therefore the echo from it could be

taken to be the reference signal. Sinca it is closer to

the radar antenna, its echo will return earlier than that

from the target T. The reference echo was delayed by an

amount which was controlled manually with the aid of an

oscilloscope. Nominally, the delay should be equivalent

:to a round trip spatial distance of 2rI. In particular,

ithe reference echo was delayed long enough so that its
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overlap with the target echo was maximal. The net effect

of all this is that the estimation of the center of

rotation (CR) distance can be off by a constant distance

plus some incremental distance which is a random function

of the azimuth angle. The rest is same as the imaging

system described in Chapter 2.

Table 7.1.1 lists the imaging parameters for the F102

model plane. For convenience, the temporal frequencies

are listed in the right column as spatial frequencies

normalized against a 10ft. (a maximum radial extent

of the targetL When the actual data was collected, the

I center of rotation was centered at a point about 12ft.

from one end of the plane so that the center of rotation

lis not at the target center.

The two sets of data are described as follows.

jSet #1 The model F102 plane is mounted right side up on

the supporting pillars above the turntable. The

data is collected over 180° azimuth rngle with 0

degrees azimuth corresponding to the direction

when the plane is facing head on towards the

antenna.
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Table 7.1.1 Parameters for Model F102-Plane Data
Model: 0.29 x actual plane dimensions

Plane dimension: 68 ft. (Nose-Tail), 38 ft. (Wing-Span)
Model dimension: 20 ft. (Nose-Tail), 11 ft. (Wing-Span)

Actual Physical Data Normalized Data (against a=10 ft)

* r = 1652 ft. r0 165.2 (a)

r 1112 ft. rI 111.2 (a)

r2 -540 ft. r 2  = 54.0 (a)

fmin = 9. 130 GHz 185.947 (a

t = 9.997 GHz 203.36 (a-)
Mnax max

f0 9.5637 GHz k = 194.478 (a-)

f 0.83 Gliz kB 17.719 (a-)

Af 3.4 Mfz Ak = 6.92x10 (a-)

Ac 0.20 = 0.00349 radians

K =256 K =256

N =1800 N =1800

Conversion factors

2
X10ft

Stctmporal) c >k(soatial) (normalized)

(sec- ) (ft-) (a-)
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Set #2 The same plane is mounted vertically (roil

angle = 900) and data was collected over 3600

azimuth angle.

For both sets of data, the nominal azimuth sampling

interval was 0.20. Using Eq. '4.2.5) with a = 10ft the

coherence interval is approximately ec = 470. Therefore,

the data are undersampled in azimuth. In data set #2- the

sampling interval varies from 0.10 to 0.30. This

corresponds to at best a coherence interval of 29.40 which

is even worse. In the radial dimension, the unambiguous

range interval (radial extent) is

S1 1

6,92x10-

which is more than 7 times larger than the target size.

Therefore, the data is oversampled in range. The range

bin width in each range profile is

Ar = 0.56 ft.

7.2 Range Compression

The two sets of data described in section 7.1 are

recorded on a magnetic tape in blocks of 256 complex

numbers, each block representing the 256 frequency samples

for a given azimuth angle. Figure 7.2.1 shows the

magnitude and phase of data set I in the format that it

was recorded. Because of the large dynamic range,
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frequency frequency

-- _ . . . -.

(Black for 0. white for 255) (Black for -11. white for +•i)

.. Figure 7.2.1. Phase and m•agnitud,: of expertmental da•ta Set 1.
The horizoi,tal axisJ represents frequency in steps of

:"3.4MI~z (9.130,411z to 9.997,Viz). Thie vertical axis
represents aspect (arimnuth) angles 0° (top) to 180°
(bottom) in increments of -a nomiaal 0.2.
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log(l + magnitude) is displayed instead of magnitude

alone, so that some of the weaker signals become more

visible. The horizontal dimension represents the radial

frequency dimension from left to right ranging from

9.130GHz to 9.997GHz, in increments of 3.4MHz. The

vertical dimension represents the azimuth angle from top
0O0

to bottom, Q to 1800. Each horizontal line of data will

be called a signature. It is also referred to as an

azituth sample in the literature.

One-dimensional FFT was applied on data set #1, one

signature at a time. The resulting projection space data

is shown in Fig. 7.2.2. The magnitude of each signature I

is now the range profile which shows the intensity of the

reflection coefficient in various range cells. Here again

due to the large dynam', range, the log magnitude of each

range profile is displayed in Fig. 7 .2.2a. Figure 7.2.2b

shows the composite Doppler phase of all the point

scatterers of the target.

The strong signal along the center of the range

profiles is the d.c. bias magnitude from the FFT. The

strong sign-ils to the right that look like cosine -shaped

contours crossing at 900 azimuth are the range compressed

signature of the target. The related mirror image on the

left was found by Chen 10] to be caused by thz unbalanced
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amplification or attenuation on the in phase and

quadrature components of the original data. The radar

antenna is on to the right so that the target looks like

it is closer to the antenna than it really is. This is

due to a consistent error in the delay time of the

reference echo that was homodyned with the target echo. A

measurement on the range profile corresponding to 900

azimuth shows that this delay error corres;ponds to a

spatial distance of about 38ft or 0.077 sec. In some

sense this error is advantageous in this case because it

allcws a separation of the signal with its mirror image.

The whole process is analogous to a holographic process.

At 900 azimuth, both the nose and the tail are at equal

tdistance away from the radar antenna.

•iThe simplicity of the ph~ase scructure also
,•ilunderscores the fact there are very few point scatterers o,

the target. From the Doppler phase on Fig. 7.2.2b, the

Sphase over the signal range bins fluctuates progressively
Sslowly toward 0 0 and 180°0 azimuth. Such a Doppler phase

•%: history is typical of point scatterers at the nose and

tail of the plane.

The magnitude and phase of the range compressed data

for data set #2 is similar to Fig. 7.2.2.
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From the range profiles, it is not difficult to see

that the nose and the tail are consistently the dominant

reflector. Notice how the nose and tail signals converge

toward the same range cell at 900 azimuth.

7.3 Azimuth Compression, Coherent Processing

The azimuth compression step is basically a matched

filtering process in which each point that is being

reconstructed is associated with a unique filter function.

!It involves interpolation and coherent integration as

expounded in Eqs. (6.1.2) and (6.1.3), respectively. This

is how it was done. The reconstruction image was chosen

to be 256x144 with a scale of 200plxels: 20ft, so that it

covered the entire target with a negligible amount of

sampling clutter. Initially, the complex image was

initialized to zero. Then the first signature (01 - 0

azimuth) was scanned. For each complex image point (ý,n)

a two -neighbor interpolation generated a sample data as

follows.

Sg(i) (i,n)+gRc(i,n

with

L.. , = i£ikBJ
ii B

I £i = •cos0.i+qsin0i

2 B-

C: i0i (2yi/1800) i (i=0,I,2,...
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rx] = smallest integer greater than x

IxI = largest integer smaller than x.

The final image point value wask -j2uk .Z
0 min i1

coh(ý') = 1800 gRC
i=1

tBecause of azimuth undersampling, coherent integration is0

carried out only when Oi-arctanOV/) lay within 0+ac or

.1800+0c. For data set#l, O= 470 and for data set#2,

0C 290.

Figure 7.3.1a is a reconstruction from data set #1.

SSince the target was symmetrical about the horizontal

axis, only the top half was reconstructed and the bottom

half is its mirror image. The dynamic range of the

magnitude of the reconstructed image is large so that

weaker signals like the wing sections were not visible.

The log magnitude is displayed instead. Figure 7.3.1b is

the magnitude of the same reconstruction from data set #2,

with no target symmetry assumed. The visual quality of

the reconstruction does depend on the general intensity

bias and contrast of the video display, but since our

objective is to demonstrate the possibility of getting

"180
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•. (a)

iii

• Figure 7.3.1. Reconstruction by coherent processing•i technique. (a) Log magnitude of reconstruction

•iii:; •from data set IA with 160° of azimuth samples,

Sand with 0 = 7• Target symetry is assumed.
•:•Center R.Bc. (ranse bin) #-198. (b) Nagnitude ofreconstruction from data set 2, w pth 360° of

azimuth samples, Ocj 29 , and center R.B.1= 193.



high resolution radar images, we will not be concerned

with that aspect of the problem. Instead, a subjective

visual criterion was used to adjust the intensity bias and

contrast until it was most "intelligible."

From Fig. 7.3.1a, the nose of the plane is distinctly

identifiable. About 2.5 feet behind, point reflectors

from the cockpit and air intake is also barely resolvable.

The delta wing structure subtends an angle of about 600

which is consistent with the actual physical target. The

entire length of the tail section can also be seen.

However, there are serious problems inherent in this kind

of imaging system. The most serious one is the

non-constant reflectivity of most practical targets,

called glint for fluctuating magnitude and scintillation

for fluctuating phase. The spikes at the tail section of

the reconstruction image are caused by such a problem.

The longer spike is due to a strong surge in the

reflectivity of point reflectors around the target

coordinate (6.5ft., 1800) when the line of sight is at

ýabout 150o azimuth. The shorter a,.-i .t:er spike is due

to the same reason on a point reflector (7.2ft., 1800)

when the line of sight is about 200 azimuth. This

reasoning is supported by the evidence from plotting the

magnitude of the range cells along the curves traced out

on the projection space data by target points (6.5ft.,
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1800) and (7.2ft., 1800). This is exactly what was done

in Fig. 7.3.2a and Fig. 7.3.2b, respectively. The strong

delta function like surge in reflectivity does occur at
40

1500 for target point (6.4ft., 1800) and at 200 for target

'Point (7.2ft., 1800). Note the glint along the azimuth

dimension. Since the coherent integration interval is

only +470, most of the glint is not covered. Therefore,

even if the data were sufficiently sampled, the glint

problem will become a limiting factor on the quality of

reconstructed image. As an illustration, a reconstruction

result is shown in Fig. 7.3.3 with +1800 coherent

interval. Note the substantial increase in the number of

spikes radiating from the tail end. The two arcs are

azimuth sampling clutters described in Chapters 4 and 5.

The delta wing structure on the image from data set#l

is also a part of the glint phenomenon. The front sharp

edge of the plane reflects strongly only to 900 incidence

waves. Hence, the edge of the delta wing is at best

-resolved up to one range bin distance. This can be

quantitatively described by the Geometrical Theory of

Diffraction [20).

The glint problem can be described analytically. For

all practical purposes, we can assume that a point target

.(r 0 ,• 0 ) is reflecting only when the line-of-sight is at an
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104

1800-%

9 c9 Coherent(6-5MT, 180DEG) CRB-199 j itraintegration

interval

.7

6

Coherent
4 interval ,

2" I I

00 10°0 600 90°0 MZ0  IS0O 1800

Aso r angle

(a) Target point (6.5ft.. 1800) over (0,180°)
azimuth of data set 1. (Note the strong
surge at 1500 and the relatively weak
reflectivity over (0,90 ) azimuth.)

Figure 7.3.2. Mag•itudo of the reflectivity of two
tail end target points.
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9 (7.2FT..480) CRB=1913
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*'6 c18 0 -1
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Coherent Coherent
intogration intet ra ion

4 interval 
interv

I I iI

0 300 600 90 10QISSO0 0°90° 120° 10 1.800

Apect Angle

,-0 0

(b) Target point (7.2ft., 180°) over (0,180°)
azimuth of data act 1. (Note the delta
function type of reflectivity chanige at

20 azimuth.)

1Figure 7.3.2 continued
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ti ,

-igure 7.3.3. Reconstruction from expcrimontal data set I
using unmodified 7oherent reconstruction
technique showting aspect (azimuth) angle
undersampling offects due to ntn-coustant
target reflectivity function.
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azimuth angle # . The line-of-sight dependent targetr

* reflectivity function can be written as
o(r,0,O) = a06(r-r0)6(ý-O0)6(6-0

where 8 is the azimuth angle of the LOS.

The complex data from the radar imaging system will

consequently be j2nr kcos (8-•0

D(O,jc) = a 0 r 0 e s(8-ýr

Using coherent processing, the reconstructed target will

be

tf-jI t-ikrcos(O0-)
a acoh(r,)J kD(ok)e dkdO

f ,•J2kr 0cos(0- 0 )-rcos (O-0))
i o0 r 0  ke 6(O )dOdk

_a r kOsinc(kBi)o X (7.3.1)

"*where XJ. r0 COS (r-00)-rcosO {r-0),

Therefore the reconstructed image is a one -dimensional

function of x• . It will look like a line strip passing

through the point (r 0 ,1 0 ) and extending out at an angle

(4r+90 0 ). Thesc strips, which we called spikes are

clearly obvious from Fig. 7.3.3.

A second square of glint that is not so obvious here

'is the inatability of the in-phase and quadrature signal

* amplifiers. This is apparent from the fluctuating bias on
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the magnitude of the projection space data along the

azimuth dimension. This is a problem in hardware

technology.

The reconstruction from data set#2 is characterized

by the glint problem too, but it is not as bad here

because the coherence interval is only 29°. The bright

spot near the center is the target center of rotation. It
is put in for reference. In this reconstruction, the

cockpit and the air intake of the fuselage are even better

resolved. Part of the triangular shaped rudder, the tail

and the wing edge can also be seen. A lot of signal noise

appear near 900 and 2700° azimuth. This is due to the fact

that the projection data was very noisy around 900 and

.2700 azimuth, The angular discontinuity in the intensity

of the reconstructed image is due to the concentration of

signal like noise around the 900 and 2700 azimuth region,

and the small coherence interval being used.

A logical step that follows is to de-emphasize the

magnitude fluctuations in the projection data. One method

is to reconstruct the image from the phase of the

projection space data only. The result is shown in

Fig. 7.3.4a. Another method is to replace the -agnltude

of the projection space data by its log(l+ tuagnitude)

value. The resulting reconstructed image is shown in
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1 Phase only reconstruction

(a)

log(l + magnitude) reconstruction

*., '. '

(b)

Figure 7.3.4. Images from data set 2, reconsLrUcted from
modified range compressed data.
(a) Phase orly reconstruction.
(b) log(l + magnitude) reconstruction.•,• •-(cl Reconstruction from range compressed

: data normaliz.ed in magnitude.
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Rconstruction from nornaalized magnitude

Figure 7.3.4 continued
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Fig. 7.3.4b. A third possible method is to normalize the

; projection space data so that the maximum magnitude in

each signature is normalized to unity. The reconstructed

'image is shown in Fig. 7.3.4c.

Shadowing problem is potentially also a serious

limitation to the imaging system. To illustrate this,

dita set #2 was reconistructed with no target symmetry

assumed. This is shown in Fig. 7.3.5. The bottom half of

the target cannot be seen since no data was collected over

:1800 to 3600 azimuth. This problem can partially be

overcome by taking 360° azmuth data. However, ill

practical situations this luxury is probably not

available. Fortunately, the shadowing problem only

becomes serious on 00 elevation. Since for most practical

applications the elevation angle is non zero, shadowing is

not expected to become a major handicap.

Error in Target Rotation Center Range

In practical situations, the range of the target

center of rotation is never known exactly. Two types of

errorsare possible in the estimation of the range of the

target center of rotation.
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Figure 7.3.5. Reconitruction with 180 aspect (azimuth)
iangle ext'nt from experimental data set 2,

with no target symui2try assumeu. The bcttom
half of the target is in the shadow' region.
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* 1) Constant Range Error

2A

Suppose the reference signal was delayed by 260

2r,
instead of 2 where r0 is the estimated range. Then the

C

collected data will have a range frequency carrier. Let

rE = +r0" Then -,j2r rk

D(e,K) = e G(O,k)

where the constant of proportionality has been omitted.

The blurring function is an isotropic function h(r).
-j27Tr k A

h(r) =B{e } = h(r)* w2 (r)

1 2 2-3/2

h(r) = - rer
0 ~ r >r>jO

w= 2llkBsinc(kBr)cos( 2 nk0r).

':Since f(r) is singular at r = rE, h(r) is a ring-like

!function with radius rE. Besides the blurring, the

reconstructed target image is also displaced in location

by (e E where (cxIy) is the (x,y) coordinate error in

the center of rotation [page 144, 37].

Figure 7.3.6 shows a sequence of reconstruction from

data set #2 using a sequence of estimates for the location

:of the target rotation center. The target rotation center

'is located around range bin number 198. The

reconstructions are made with the center of rotation at

range bin 197, 197.5, 198, 198.5, 199. Data set #2 is

.193



Center of rotation at

range bin # 197.0

* - :.:.• range bin # 197.5

".,.e range bin # 198.0

S- range bin # 198.5

range bin # 199.0

Figure 7.3.6. Reconstruction from data set 2, using coherence
interval 0 a 47 , mean (spatial) frequency k - 194.478

-* but varying center (of rotation) range bin number.
One range bin number corresponds to 0.56 ft.
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used because it has a wider coherence interval and

:therefore the blurring effect can be more noticeable for

center range 197 to 199. It should also be realized that

the smaller the coherence interval, the less severe is the

effect of constant range error.

2) Sinusoidal Range Error

SSuppose r 0 ^ = r 0+r cos(+E) where r,, are constant.

Then the gathered data will be
-J2Trkr cos (O+8

D(6,k) = e S e G(Olk).

In Cartesian coordinates this can be rewritten as

-j27r(k x xC+k yyD(kx,ky) = X e G(kx,ky)
X y X y

* where
kx = kcosO

ky = ksinO

Xe = r ecosO

YE = r sinO .

The reconstructed image will simply be shifted by (xc,y d
iand no blurring or distortion occurs.

This type of range error is very realistic because in

practical situations r 0 is more difficult to estimate than

r 0 " For example, r 0 can be taken as the range of the most

-prominent point reflector or the closest point reflector.
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!Error in Rotation Rate

In general, this error is time variant in nature and

'hence it is difficult to examine its effect over large

azimuth coherence intervals. For small azimuth coherence

,intervals the problem has been solved [page 139, 37].

Suppose a small error exists in the rotation rate such

that
AO =A

l-C0

:where Aý is the actual target rotation in a given

increment of time AT and AO is the azimuth increment in

the same AT. Assuming II = constant << 1 and small

azimuth coherent processing interval, the data over that

interval is k 2- j2n xA
D(k' ' k ) 0 (k ,Gky(+

X y X kyle)

where k' kX-kO

kx = down-range frequency

ky cross-range frequency

Therefore the reconstructed image will suffer a scaling

distortion in the azimuth dimension. This is known as a

change in aspect ratio. Besides this, a range dependent

-defocus blur will also occur.
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17.4 Incoherent Processing

From the projection space data, the target *signal

extends over about 40 range bins. This means that only 40

radial frequency samples are available for the target.

The radial frequency sampling interval is therefore kB/40
1

and the maximum radial frequency components is 1 kB . In

order not to oversample in azimuth, a good criterion is to

let the radial sampling clutter and angle sampling clutter

overlap. This can be achieved by choosing the azimuth

sampling interval as follows.
A 0 = Azimuth sampling interval radial frequency sampling interval

sampingmaxinrm radial frequency
k B/40

k B/2
= 2.860

"Both data sets #1 and #2 are therefore oversampled in

azimuth.

*1 -The data was resampled with A = 10 by keeping one

out of every five signatures. The magnitude square in the

projection space was computed. From that point on the

Shepp & Logan algorithm for CAT reconstruction was used to

reconstruct the target. Figure 7.4.1b and Fig. 7.4.2b

shows the result of incoherent processing from data sets

'#I and #2, respectively. In Fig. 7.4.1b, target symmetry

was assumed. Here the reconstruction is "unintelligible"

other than to give a rough estimate on the length of the

target. Since 3600 data is available for data set #2,
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Coherent Processing Incoherent Processing

-Pim

(a) (b)

Mixed Processing A Sketch Diagram

AM

,.4

(c) (d)

Figure 7.4.1. Reconstructions fromn data set 1, using the
three reconstruction technivues.
(a) Coherent processing (47 azimuth coherence).
(b) Incoherent processing (180 projections).
(c) Mixed processing.
(d) A sketch diagram of the F1O2A plane.
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Coherent Processing Incoherent Processing

-'I -- . . C, - ....

(a) (b)

Mixed Processing The Actual Setup

Sti

4.M,

(c) (d)

Figure 7.4.2. Reconstructions from data set 2 using the
three reconstruction technigues.
(a) Coherent processing (29 coherence).
(b) Incoherent processing (360 projections).
(c) Mixed processing.

I (d) The actual model 1102A plane setup at 90 roll
on the rotating platform when data set 2 was
collected. 199
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:Fig. 7.4.2b is much more intelligible. In particular, the

nose, cockpit area and the rudder is barely noticeable.

Reconstruction using incoherent processing is also

severely degraded by target glint. Weak spikes can be

seen radiating from the tail and nose tip.

7.5 Mixed Processing

For negligible range walk, each azimuth interval must

be
0W <aB 3.23W akB

and for negligible change in Doppler (variable azimuth

"defocus)-• 5.810•: 0W< 0

The projection space data were sectioned into segments of

azimuth width 3.2°. 1-D DFT was applied in the azimuth

dimension on each segment to give an image frame. Each

'image frame was rotated by an amount eual to its- mean

azimuth angle and interpolated in magnitude. After this

:the magnitude of all the rotated image frames were

superimposed. Even though azimuth ambiguity exists in

"each frame, it gets averaged out in the final image.

Figures 7.4.1c and 7.4.2c are reconstructions from data

.sets #1 and #2, respectively using this technique. In

!Fig. 7.4.1c, target symmetry was again assumed which means
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;that the upper half of the image is a flipped version of

,the lower half. For reference, a sketch of the actual

F102A plane is shown in Fig. 7.4.1d and the actual model

on the turntable in the testing grounds is shown in

Fig. 7.4.2d.

Experiments (page 135, 101 have shown noticeable

amounts of blurring when the target center of rotation is

off by as little as 0.25 range bin width.

.7.6 Comparison of the Three Techniques

The first obvious observation is on the target

resolution. As predicted earlier, the resolution achieved

with coherent processing is best among all three

techniques. The resolution with mixed processing is worse

than that with inccherent processing for data set #2 but

Snot so for data set #1. It is therefore inconclusive as

to which latter two techniques gives better resolution.

Because of target glint, the coherent processing technique

will give non-uniform resolution in distinct directions.

-In practical cases, where only a fraction of the azimuth

data is available coherent processing will again give

- non-uniform resolution. This problem is not serious with

mixed processing. The effect on incoherent processing is

not known.
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As it is characteristic with any type of coherently 1

processed image, speckle .s also present with coherent

processing technique. The image frames do have a lot of

speckle but it is washed out through incoherent sumation.

Sensitivity to glint is particularly strong for both

coherent and incoherent processing. This is natural for

the coherent technique because of the high resolution.

But for incoherent technique, it is due to the lesser

amount data averaging. Sensitivity to a constant error in

the target center of rotation is strong for both coherent

and mixed processing. It is also expected to be strong

with incoherent processing.

Sampling requirement is least critical with

incoherent processing whereas both the other two

techniques demand greater sampling rate. Computation time

required is also substantially less for incoherent

processing. It was only 2 minutes CPU time while it took

more than 90 minutes using coherent techniques.

2
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Chapter 8

INVERSE SYNTHETIC APERTURE RADAR

8.1 The General ISAR

In this chapter we will be concerned with applying

'the basic imaging process to Inverse Synthetic Aperture

!Radar (ISAR) rý.'>e ordinary SAR geometry consists of an

airborne rae..z platform illuminating the terrain below.

In contra!t ISAR geometry consists of a ground-based radar
tracking moving target. The motion of the tracked target

Sis, in ge-eral, composed of rotational motion and

translational motion. Since only the target's rotation

with respect to line-of-sight (LOS) contributes to the

"imaging property, the Doppler induced by the remaining

:components of the motion will have to be removed from the

!data before any further processing can be done.

F Let us first derive an expression for the return

phase and Doppler of c. general target flying an arbitrary

;trajectory. The practic..l assumption here is that the

front end of the target will always be pointing in the

direction of the trajectory. A target reference point C

will 6e taken as that point in space which the tracking
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radar is locked on to. The instantaneous slant range

"rector of this target reference point C will be denoted as

the gross range vector r 0 "

Let V be a vector of an arbitrary point B on the

target referenced to the target reference point C as shown

in Fig. 3.1.1. The entire rigid body is moving with

inrtantaneous velocity v(t) and rotation vector WT(t).

:Then the general range vector of B is

f =Y + x (8.1.1)

The phase return of a point reflector at B is

S 2•k'r (8.1.2)

where 2 .2U (propagation vector/if)

r
U r (unit vector parallel to F0)

X, mean wavelength of radar signal.

From here on.! u will represent a unit vector in the

direction of the vector indicated by its subscript.

Therefore 1 - -

0+X.Uro

Differentiating the left- and right-hand side of the above

equation dr
1 d$ 0 d -

W dt dt + dt (x .•r
0
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F. V- target trajectory
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; •:$ antenna__

* I

II

1igure 8.1.1. Itiverse SAR geometry.
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- - dur0dr 0 +dx - + x 0

dt t r0 dt

(8.1.3)
dr

0

t + Ur0 L

where • A r0 xv
L =X

W L 2

- instantaneous angular velocity (rotational)

of the LOS, due to its translational motion.

In deriving Eq. (8.1.3) we have used the following

relationships.

Since x is a vector on a rigid body, its tangential

velocity (ixx-) is the only velocity component it has.
Hence, Ad _T X. Also from Appendix 8A,

dtt
_dur0

X. d-cit- = w Lx'r 0

where "L is defined as before.

Rearranging Eq. (8.1.3) and defining the time Doppler

frequency as _.I de tne Doppler of the return signal is

fd 4[-o + (GT-WL)XU.r0 ] (8.1.4)

The Doppler frequency (fd) therefore has in general

three components. The first component

dr 0
f k dt

is called the translational Doppler or the gross
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range-rate of the target. This is the component that has

; no contribution to the imaging process. It must be

isolated and subtracted from the overall Doppler in the

tracking data.

The second component

f= X x U) (8.1.6)

;is that part of the rotational Doppler that is due to the

actual rotation of the target.

The third component

f 3 k(W Xx U r) (8.1.7)

• is that part of the rotational Doppler that is due to the

rotational effect of the object with respect to the LOS

and is contributed by the target's translational motion.

The difference of the last two components

= k(i -. X
2- 3 T L U

contributes to the imaging capability of the radar system

and it is called the differential Doppler* or the

rotational Doppler.

*The terms translational Doppler and differential Doppler
-were used by D.R. Wehner in (40].
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The translational Doppler can be crudely approximated

from the range rate in the tracking data. If the

signatures are sampled at sufficiently high rate, this

crude approximation can be fine tuned to a better accuracy

by following the Doppler history of a small point object

on the target. Examples of such points are the wing tip

'or the nose tip of an airplane.

T= 0 when the target is flying a linear trajectory.

:In this case the f component of the differential Doppler

is zero. When the aircraft makes a turn or maneuvers a

non-linear trajectory, WT 5 0, f2 AO. Even though any

yaw, pitch, or roll from air turbulence will create random

:errors in wT , such problems will not be of concern to us

here. WT will in general be a linear combination of roll,

pitch, and yaw;

WT + +W " (8.1.8)
WT Wr +Wy +Wp

where Wr, Wy , and wp are respectively the roll, yaw, and

pitch components of the target rotation. If an aircraft

makes a turn, wr (roll component) will be the dominant

component of wT for the initial moments of the turn. Then

Kr will drop to zero and wy will take over. Simulation

results [38] point to the fact. However, for arbitrary

;maneuvers wr,ey , and wp will all be functions of time.

Because (wT-WL) is normal to the projection plane, it
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I • t

!means that the projection plane will also be a function of

itime. It is very difficult to estimate in general

simply from the phase return of the target. For simple

flight trajectories however, gross estimations can be made

from the tracking data.

Except for the linear trajectory case, -w is in most
L

cases negligible. -L has two components as follows.

(L =We + a (8.1.9)

where ue is the elevation angle scan rate and Ua is the

azimuth angle scan rate. For targets at small elevation

angles, 7e is usually negligible. Since we and wa in

practice do not fluctuate wildly, the elevation angle Oe

and the azimuth angle 0a from the tracking data will

probably give a sufficiently good estimate ofwL

From here on, the problem cannot be developed further

without further information or assumption. One such

information is the flight trajectory. We will look into

Ithe pattern of the various Doppler components for two

simple trajections. the linear trajectory and the

Scircular trajectory.
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8.2 Linear Trajectory

To simplify the problem, let us look at the plane

formed by the linear flight path and the antenna location

A as in Fig. 8.2.1. Let y be the distance BC along the

flight path between target reference center C and the

point (B) of the closest slant range distance Ro. is

the aspect angle on the plane of interest and is given by

.where 0e and 0a are elevation angle and azimuth angle,

respectively. %0 is some initial reference angle such

that when the LOS is broadside on the antenna,

0 +0 0.
0

The translational Doppler frequency which arises from

;the velocity component along the LOS is
f kdr0

1 dt

kvsin(6+0 (8.2.2a)

or kv y (8.2.2b)

'By expanding the inverse square root term in Eq. (8.2.2b),

-one gets 2

fl = -[i+ R0 )+...1 for Y=R 0+5,I5I<<R0 (8.2.3)

•+\ 3=kVl .. : for yR 0
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B. Radar

antenna

Figure 8.2.1. Linear flight path geometry.
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By integrating f1 the translational Doppler phase from the

*target reference center is

1 '* constant + kv[y+ g - y>R 0

Skv I2 1 3
* constant + -[+ 1 e 2 C +...] Y=R0+e'I•J<Rf-[:+ f 2 24 22 R4 (8.2.4)

kv, 1 y- +. .. ] y R
constant + -[2TR -4 3 y< 00 R

Therefore for slant range distances much larger than

'the broadside range R0 (i.e., y>R0 and y2ýR 0), the Doppler

,phase ýI varies more or less linearly with y (or e) except
kv e 2

that when yR 0 , the quadratic phase term 4-(y"0-) becomes
0

significant. For y<R0 , the Doppler phase is a quadratic

function of y. When the target velocity v is constant,

the y dependence of the Doppler frequency and phase can be

carried over to its time dependence. But when v is not

constant with time, the time variation of the Doppler

frequency and phase will be more complicated. For this

reason we have chosen y instead of t for the independent

Svariable in Eqs. (8.2.3) and (8.2.4). This is illustrated
in Figs. 8.2.2a and 8.2.2b.

The target rotation GT does not exist for the linear

;trajectory as that the first component of the differential

Doppler is

f 0= 0.
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Gross Range Phase HtstorY

i II~.E4OOEI.07

II. iS~'I•07:

,,40E 7 . . . .. . . .

(a)
*.OE.

* Distance (in R0 )

TransLational DoPPLer HistorY

(b)

-1.50 -1000-0.5.

Distance (in R)
0

Figure 8.2.2. Computed flight parameters for linear
trajectory vs. distance from the broadsideposition.

(a) Phase (radians) from target center,
(b Translational Doppler (radians/sec).
(c) Aspect angle (degr.~ees).

V (d) Sweep rate (radians/sac) of the line. of
sight.
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Distance (in Ri

Figure 8.2.2 continued
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The second component of the differential Doppler is
- - d(e+60)f 3 -k(YL X'Ur ) where WL - Note that

y = R0 tan (04%) Differentiating both sides of the above

equation and rearranging the terms, one gets

v V 2 V 1

L Rcos (+os ) or R0 1+( ) 2  (8.2.5)

W is therefore maximum when the LOS is broadside and goes

:to zero in cos 2 (8+00). Suppose the target is flying at a

iconstant velocity toward the broadside position, and

suppose the signature-to-signature time sampling interval

is constant. As a result of Eq. (8.2.5) there will be an

.azimuth scale change between reconstructions from the far

data and the near data. Far data means data collected far

from the broadside aspect (i.e., large (0+0O) or y). Near

data means data collected close to the broadside aspect

I(i.e., small (0+OO) or y). To correct this, the

signature-to-sigriature sampling interval (At) in time must

'be changed adaptively to

At W- (8.2.6)

:provided that (0400) can be estimated a priori. If the

'data is coherently processed ovec a wide aspect angle,

this adaptive sampling correction is even more important

because without it there will be not only a scale change

______215J
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problem but also a defocusing effect.

Equation (8.2.5) is plotted in Fig. 8.2.2d with y/R 0

as the independent variable. Notice how wL (LOS sweep

rate) changes by a ratio of 3:1 from broadside position

(y=O)to y = 2R0 . Figure 8.2.2c shows the aspect angle

(6+60) as a function of y. Figure 8.2.3 shows plots from

:actual tracking data on an FIll plane flying a linear path

:collected over approximately 50 seconds. The gross range

(c gross-range phase) and the range-rate (o translational

Doppler) are plotted in Fig. 8.2.3a and b, respectively.

The aspect angle (0) is plotted on Fig. 8.2.3c. over the

time interval when the data was collected, the aspect rate

W is quite constant except for some local time fluctuations.

8.3 Circular .Trajectpr

A slightly more complicated case arises when the

-target traces out a circular trajectory of constant radius

-R. We will simplify the problem by assuming that the

plane of the circular trajectory is the same as the

Splane formed by the LOS at all times. That is, V and F0 al-

ways lie on a same given plane. Furthermore, the vector f0

corresponding to the center of the circular trajectory is

constant. See Fig. 8.3.1.

The translational Doppler in this case is
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Gross Range CKm)
S97.5 .. .. . . . .. . .. .... ... . . ... . . .. . .
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92.5

90.0

(a)
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•~~ ~~~~ I V T . . . . .. . .. . ~S85.0 44
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13S.0
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"113.0
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(b)
87.5

4V

-12.. -133.0 -100.0-8. - .

-Ti (sEc)

Figure 8.2.3. Flight p,.rameter variation with time for A
linear trajector"y plotted from actual tracking
data of a Fill plane.
(a) Gross range fkzn).
(b) Range rate (m/e).
(c) Aspect angle (degrees).
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Figure 8.2.3 continued
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C / T (circular
S.... trajectory)

*t
' ~B

• OO

n unit vector normal

to earth's surface;• A
pointing out of the

paper.

* radar antenna

Figure 8.3,1. Imaging geometry for the circular
trajectory case.
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f kdr0 k(-.i u vkr0
1 dt r r

But -0 = K0+ and v.R= 0. Therefore, f, = k ( 0).
r0

Letting a being the angle between T-and R0,

f (kRV) C (8.3.1)

:This can also be rewritten as

sinw t"kv Tf (1+62)172 (l1ycosr2t)1 7 2 (8.3.2)

-- !,:'2R R 0
where y 0 RR

2 2R
•..~~ +R 0 -

0
Note that a = Tr/2 or 3 1/2 when v is normal to R and c = 0

or T when v is parallel to R0.

For the case when R0 >>R (6<<l) such that r 0 _R0 =

constant, the translational Doppler is proportional to a

-sinusoidal function as follows.

"f kvcos•. (8.3.3)

If in addition v = constant, a will be a linear function
!of time and the translational Doppler history will be a

sinusoidal function of time

f kvcos(wTt),, (8.3.4)
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In general a is not known but if v is constant,

will also be constant and the least squares method can be

:used to estimate wT. This will be shown in the following

paragraph. fl in Eq. (8.3.2) is plotted in Fig. 8.3.2b

for 6(=R) = 0.1, 0.3, 0.5, 0.7, 0.9 and in Fig. 8.3.3bR0

for 6 = 0.01, 0.02, 0.04, 0.08, 0.16 with wT = 1, v = 250
m/ se c '2 f 0

,/sec, k = _o f = 5672 MHz, c = velocity of light.
C

Note that for 6 <<1, fl varies sinusoidally with time t.

:The gross-range phase ýl history is also plo.tted in

Figs. 8.3.2a and 8.3.3a as follows:

= (kR -V1+71i7YCOsWT?

where R0 was taken to be 76 km. The gross range (4i) and

.range-rate (•fl) for an Flll plane making a 0.9g turn are

:plotted in Figs. 8.3.4a,b, respectively.

The first component of the differential Doppler is

= k( X x. Ur
0

where wT = yR. If T is constant, it can be estimated

from the tracking data as follows. From Eq. (8.3.1), a

'slight modification will give, ~dr0
r" 0r - (R v)cos( Tt+a).

If R0v is constant, then the product of the range rate
dr00-• and slant range (r 0) will be a sinusoidal function

I- of t with some arbitrary error added to it. Let
y EY ! [Yo 'YN-I]T

-where
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Figure 8.3.2. Computed time variation of flight parameters
for a circular trajectory with values of

65(=R/R ) equal to .1, .3, .5, .7, and .9.
(a) Phase from the target center (-gross range).

(b) Translational Doppler (normalized to 2v/)).
2 2

(c) Aspect angle (8e + e az) radians.
(d) Sweep rate of the line of sight (in wT).
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Figure 8.3.2 continued
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Figure 8.3.3. Computed time varying of flight parameters
for a circular trajectory with values of 6(-R/R )
equal to .01, .02, .04, .08, .16.
(a) Phase from the target center (oagross range).
() Translational Doppler (rad/sec).
(c) Aspect angle (degrees).
(d) Sweep rate of the line of sight (fraction
of
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ii:I I I I I I I I I I *

as Gross Range (kmn)

s0

75

(a)

70

67- L 1. I I I I 1_ I I ! I I p 1 p p I I. I
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Figure 8.3.4. Flight parameters vs. time for a circular
trajectory (approximately) plotted from actual
tracking data on a Fill plane making a circular turn.
(a) Gross range ((x signal phase).
(b) Range rate (a: signal Doppler).
(c) Aspect angle (degrf•es)-
(d) Sweep rate of the line of sight (or radar beam).
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Yl r r0 (t d-t r0 (ti)

N total number of signatures taken over the circular

SAlso let trajectory.

f ([f0 ,flf 2 ,.. fN_2

1= R0e cos(w ti +c0)

Let i = [R0v &T al]T be the vector to be estimated. Then

wwe can write

-•= T(i) +

where F = error vector. Suppose R0 is the initial guess

:for 5. Then 5 can be iteratively estimated by minimizing

the least squares error F F using the steepest gradient

method as follows.

where~n+l = n i (Y-- )(8.3.5)
1where

~~*~ d f~( 3i) 1T(
The second component of the differential Doppler is

f3 k (ULX 3 ur0) •
dt

:where 0 is the angle between R and r0" Both 0 and w can

be expressed as a function of time as

0 tanl_0 sinwTt ) (8.3.6)

,,,,.,•. .cos T V

) ( coslt (8.3.7)
L WY 1YCOSW T

where Y is defined in Eq. (8.3.2) and t - 0 when the

target is closest in range to the antenna.
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Equations (8.3.6) and (8.3.7) are derived in Appendix 8B.

!W L can also be approximated by smoothing the angle
2 2

tracking data VZe+7a over the entire aspect angle of

interest.

Equation (8.3.7) indicates that w is a function of

time with WL increasing to its maximum around the

:trajectory points with zero range-rate. wT/wT is plotted

in Figs. 8.3.2d and 8.3.3d with 6 = 0.10, 0.3, 0.5, 0.7,

:'0.9 and with 6 = 0.01, 0.02, 0.04, 0.08, 0.16,
respectively. Note that for 6<<l, IwLI. peaks at points of

zero translational Doppler. Over the entire time interval

(1 second) when the target makes a complete 3600 turn,

fluctuates as much as 0 . 35 wT for 6 = 0.16. Also in the

vicinity of maximum (or minimum) translational Doppler

(T= 0.25 and 0.75) the rate of change of wL is most

severe. Since the azimuth scale is directly proportional

to WL, it will go through its most drastic changes around

points of maximum (or minimum) translational Doppler. If

corrections for changing wL is not made, the resulting

image reconstruction will be most severely degraded in

azimuth around points of maximum (minimum) translational

Dcoppler.

The abpect angle pattern is plotted in Figs. 8.3.2c

,and 8.3.3c. The aspect angle 0 and the LOS sweep rate 6L

_ _ _ _ _ _229
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ifrom the same tracking data of a turning FIll plane are

shown in Fig. 8.3.4c and d, respectively. Due to roundoff

,error and the inherent tracking loop estimation error in

'8, L was computed by taking the derivative of the

smoothed version of the angle (1) tracking data.

The overall rotation rate (wT-WL) will therefore not

be constant even when v is constant. But if R0 >> L, then

T>>W. In this case, the effect of the time varying

nature of w will be negligible over a reasonably small

aspect angle interval.

In the analysis done so far, the surface scanned out

by the LOS was isoplanar with the circular trajectory

plane. In other words if u is a unit vector normal to

the earth's surface and
-u x~

(subscript h corresponds to the direction of horizontal

polarization), thon the circular trajectory piaane is the

same as the (Uh' RO) plane.

In general, that is not the case. The projection of

the circular trajectory onto the (fihZTO) plane will be the

effective trajectory. Within the limits of the far field

assumption, this effective trajectory will be an ellipse

with its major axis along the line of intersection between

the trajectory plane and the (hVO') plane. This is
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illustrated in Fig. 8.3.5.

Hence, if the circular trajectory gives rise to some

appreciable change in elevation angle over the tracking

interval, the effective trajectory (which is ell:.ptical)

:should be considered instead.

-8.4 Conclusion

The time Doppler frequen,.y associated with an
airborne target flying an arbitrary trajectory has been

;nmathematically formulated. It was shown that the Doppler

::frequency can be split into translational and rotational

components. The rotational component is the Doppler

:induced by (NT-YL) where wT is the rotation rate of the

:target itqelf and wL is the rotational scanning rate of

the radat line-of-sight. Two examples are given, one for

Sa linear trajectory and the other for a circular

x trajectory. In both examples the pattern of the

translational Doppler was derived, the time variation

patter:n of wL was also derived and the least squares

-eatimation of wT was studied.

Finally, it should be noted that for the linear

itrajectory case, the rotational Doppler was induced by

S-<0 while for the circular trajectory case it was

induced by (w1i-u 9 >0. Therefore, the rotational Doppler
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Figure 8.3.5. Elliptical effective trajectory for small
aagle of interjection between the circular
trajectory plane a_,d the (u-i plane.

2321



for the two cases have opposite signs. This means that if

e a small section of the data from both trajectories were

range and azimuth compressed, the cross-range in the two

!reconstructed intages will have opposite directions.

2

p;

i "i~i
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APPENDIX 8A

Our objective is to show that x. dr X X.ur•dt L 0O
where wL= (roxv)/ro • First of all note that

__r0_ dr 0

<•dt r-2 dtr0

- Therefore -- r

00

•, - _ __ ( v ) 1
"du"r 0  r 0

dt r 0 rr 0

• - . -(x (x )11~

0  rr 0
Tr(v- -r )

V 0

'r0

• = =--i•-- X x.ui

r 0 r 00 ro

r r• rr

•"': 234
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APPENDIX 8B

-1 sinwT t

To show that = tan -

- COSWi t
R T

•----- •: . 2 1- •- cosw T

L R 2 _)R 2 1 _______ T0I T
,where

T = = 2RoR/(R +R

!Proof. Referring to Fig. 8.3.1,
sinO(r-w t-0) sin(w Tt+e)sine TT

R R R.0 0

sinw tcos0+ sinecosw Tt

R 0

'Or simplification,

0 tan- (8B.l)

-Since W _d6 by differentiating Eq. (OB.l) the rotation

rate of the LOS will be R

[,L 2+R 1Y-COSWTt "(UT

1 6-cosw 
t2 T

! .where lYOT
. R/R 0

J:• :2RR 0

'.R + ftoW

S-wher235
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Chapter 9

EXTENSION TO FURTHER STUDIES AND CONCLUSION

9.1 Extension to Further Studies---Motion Compensation

We have addressed the problem of achieving high

resolution 2-D digital reconstructions of radar targets

from a multifrequency stepped radar. The first important

-criterion for such high resolution reconstructions is the

requirement that the radar. object be rotating at some

constant or known angular rate. In practice, such

:rotational motion can be brought about from various

sources. The first source of rotational motion can be

generated from the translational motion of the radar

target itself. One should keep in mind that it is the

'change in the aspect angle of the target with respect to

the LOS which counts as the rotational motion. It was

shown that this rotational motion is exactly the same

rotational motion as that of the radar beam (wL) and

therefore it can be estimated from the radar angle

tracking data. This form of rotation is prevalent among

non-maneuvering aircraft and ships moving along a linear

trajectory over calm seas. The second source of
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:rotational motion is the true rotation of the radar

:, object. Examples of this type of motion are the yaw and

roll of a turning aircraft, the roll, pitch, and yaw of a

ship on rough seas and the autonomous spinning and

0 precessing motion of a space vehicle.

We have noted that the translational rotational

motion can be estimated from the radar angle tracking

data. Because the rotation rate determines the scale and

the amount of distortion on the target reconstruction, it

is important to be able to estimate the rotation rate to a

high degree of accuracy. Unfortunately, because the

target size to beam width ratios of most targets are much

smaller than the beam splitting ratio (= angle track

resolution/beam angle), the tracking angle data are very

Scrude in accuracy and usually some amount of smoothing

would have to be done.

LFor the true rotational motion of the target, the

rotation rate will not be readily available if the target

is a non-cooperative target. In such cases the true

Orotation rate is difficult to estimate. Although further

work has been done in the area of rotation rate estimation

t Lfrom radar signals, it is not within the scope of this

dissertation. The important point to be made is that the

true rotation rate of a target can be estimated from the
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radar signals itself and therefore the angular scaling of

the radar data can be adjusted..

Even though the rotational Doppler is responsible for

the 2-D target reconstruction capability of the

multifrequency stepped radar, it was shown that the data

is a composite sum of two Doppler components, the

rotational Doppler, and the translational Doppler which

idoes not contribute to the 2-D target reconstruction

process. Therefore with any realistic radar data, the

translational Doppler must be removed from the raw radar

data before any reconstruction procedures can follow.

This step is called motion compensation. Since any

'translational Dop:'ler not completely offset by motion

1compensation will easily degrade the quality of the radar

object reconstruction, it becomes equally as important a

'task to be able to correctly carry out motion

compensation.

Ideally, if one knows the exact motion of the target,

one can carry out motion compensation on a target exactly

without error. In the absence of such information, motion

compensation becomes a difficult task. In the case when a

reference target point scatterer stays within a single

range resolution cell for a long period of time, one can

completely motion compensate the data over that period of
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time [10]. This is accomplished by subtracting the phase

Y 0 !of the range compressed data over the entire range profile

with the phase of the data in the range cell in which the

'reference target point resides. The criterion for

SOchoosing such reference range resolution cell is that only

;one scattering center should reside in that range

resolution cell. If two scattering centers happen to stay

within the same reference range resolution cell, the

reconstructed radar object would appear as dual objects.

:Therefore, it is not difficult to identify such cases.

Note that such motion compensation schemes will completely

:cancel out the phase in the reference range resolution

cell.

To achieve higher resolutiona much more stringent

motion compensation scheme is required. For one thing a

,given (or chosen) reference point scatterer will not

;always stay in the same resolution cell. Therefore,

whenever the reference point scatterer migrates to the
neighboring range cell, the entire range profile will have

to be shifted by the same amount so that the reference

:point scatterer appears to be residing in the same range

!cell. This procedure is called range alignment. The

difficult task is to be able to carry out the alignment

procedure automatically over a long period of time (in the

Sorder of several minutes).
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Another source of difficulty arises from the factF-
that any given scatterer will always share a common range

cell with some other point scatterer at some target aspect

angle. For the processing of radar data over a wide range

of aspect angles, this situation is guaranteed to occur.

When this occurs, it will be difficult to differentiate

which of the two scatterers in the reference range cell is

the reference scattering center.

A range alignment procedure was proposed by Chen

[I11. The original purpose of this alignment procedure

was to correct the range profile to range profile

misalignment due to range tracking errors. The amount of

range offset or misalignment between two adjacent range

profiles was estimated by computing the amount of relative

.shift between two adjacent range profiles for which
maximum cross-correlation is obtained. Only the magnitude

of the complex range profile was used in the

cross-correlation. Within a short period of time, such a

procedure provided enough correction so that the remaining

=misalignment was noticeably within one range cell width.

For longer periods of time however, such a procedure does

not prevent the reference scatterer from drifting from.

range cell to another.

A new range alignment procedure that will prevent
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long term drifting of a reference scatterer is needed.

'One method is to identify a point scatterer for the

reference scatterer and track its long- term drifting

behavior over the entire period of time in which coherent

processing is desired. The method can be described asI

follows. First, the range profiles are range aligned to

Iremove misalignment.due to range tracking errors. Then a

suitable point scatterer is chosen as the reference

scatter center. When there is no other resident scatter

center in the same range cell, this reference scatterer

can be traced in range as it hops from one range cell to

another. If the range profiles are sampled at small

enough time intervals, so that there is no ambiguity in

the phase change between adjacent range profiles, the

! range drift of the reference scatter center within any

range cell can even be estimated to within a fraction of

the signal wavelength.

Finally, when the ambiguity of two scattering centers

-residing within the same range cell arises, one can use

Doppler measurements to resolve the two scattering

centers. When Doppler measurements are needed to resolve

* ambiguous scattering centers, one must motion compensate

the data first. However, since the objective is only to

: resolve two scatterers, a cruder motion compensation

procedure is sufficient. This can be achieved by removing

241



the smoothed phase history of the range cell. Even though

there is enough reason to believe that the above motion

compensation procedure will sufficiently align the

reference scattering center over a long term, much more

work will be needed to show its performance.

9.2 Conclusion

A great deal of the current research activity centers

around the problem of the target identification which

'hopefully will lead to automated target classification.

The use of the term "target" implies that radar signals

are used exclusively, which is misleading. In practice,

target identification problems are also entertained by

researchers in the infrared and optical regions of the

electromagnetic wave spectrum.

One of the basic approaches to the problem of target

identification using radar signals is to obtain faithful

reconstructions of the target and then apply target

Sidentification algorithms on the reconstructed image of

Sthe target. This approach is followed in this

dissertation except that we concentrate on only the

reconstruction part of the problem.

In Chapter 2 we have described how a multifrequency

step (MFS) radar represents the Fourier transform of the
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target scattering coefficient distribution (x,y) of a

rotating object. It was mentioned without proof that a

;;similar relation holds for other coherent radars. The

above relation holds as far correct as the following three

Simportant assumptions can be held true:

1. the radar signals can be motion compensated exactly;

2. (x,y) does not change with the aspect angle of the

I target relative to the line-of-sight;

13. the back scattering of radar signals is specular in

nature.

S(Atmospheric effects on the signals are less

* important.)

[# In general, the radar data represents the 3-D Fourier

* transform of the target scattering coefficient

distribution. In the special case in which the rotation

rate vector is constant in direction, the data represents

the 2- Fouxier transform of the target scattering

:coefficient istribution. In this case, the signal

'frequency of the MFS radar represents the radial dimension

in the Fourier domain, and the aspect angle represents the

angular dimension in both the Fourier domain and the

target space domain. This means that the radar data

samuples the Poutier transform domain of the target

function (x,y) in polar coordinates.

. •a43
•?- -



The radar signal frequency has a maximum and minimum

frequency limit defined by the burst of pulses in the MFS

radar. If in principle the target aspect angle changes

through 3900, then the radar data in the Fourier domain

will be constrained to within an annula ring for the 2-D

"case. The frequency limits become a masking or filtering

operation on the radar data. Since one can reconstruct

the target simply by taking an inverse Fourier transform

!of the annula ring. The annula ring mask or filter is

1called the pupil function and its inverse transform is

called the point spread function of the entire imaging

system. It was shown that for narrowband systems (mean

signal frequency signal bandwidth of the burst of

pulses), the Raylelgh resolution was inversely

proportional to the mean signal frequency only. The same

conclusion was reached with the resolution problem when

the Doppler bandwidth of the signal was studied. This is

shown in Chapter 3.

* Since the radar data is sampled discretely in polar

coordinates in the Fourier domain of 'he target function

(x,,y), it is important to understand the sampling

r-quirements in both radial and angular dimensions. In

:Chapter 4, the effect of undersampliaig in either

dimension was demonstrated. The necessary condition and

the sufficient sampling condition were also derived and
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summarized in Table 4.2.1. Sampling requirements from the

DOF (Degrees of Freedom) [151 or time-bandwidth-product

points of view also gave similar results. Moreover, a

iprocessing method was also suggested for cases in which

the radar data was not sufficiently sampled but satisfies

the necessary sampling condition.

In Chapter 5, an analytical approach is followed to

t solve the sampling requirement with polar format sampling

in the Fourier domain. Poisson's summation formula was

applied to the Fourier transform of the unit circle

sampled in angle only. The same formula was applied to

the Fourier transform of the annula ring pupil function

sampled in radial dimension only. Then the process was

* repeated for the annula pupil function sampled in both

radial and angular dimensions. It was shown that the

polz coordinate sampling effects were drastically

different from the well known sampling effects in

* rectangular coordinates. The most notable difference was

;in the absence of the main spectrum repeated periodically

in a rectangular fashion. In contrast, the polar

coordinate sampling gives rise to error terms (called

clutter) which can accounted for as being the radial

sampling effect, angular sampling effect, and simultaneous

radial and angular sampling effect. The clutter from each

samplingeffect consists of an infinite number of terms (or
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orders) and each term (say the nth order term) is an

isotropic function whose value becomes significant only

when the radial dimension of the spectrum is at n times

some constant factor. This factor depends on the sampling

interval of the corresponding dimension.

Besides the above three clutter terms, a fourth

sampling effect terms appears when there is radial

sampling. The value of this term grows significant around

the main lobe of the spectrum. It therefore does not

behave the same way as the other three sampling effects in

that it merely modifies the shape of the main lobe of the

spectrum. Since its peak value is inversely proportional

Sto the K-1, where K is the total number of radial samples,

'its effect becomes negligible when the radial sampling

interval is small. The polar coordinate sampling effects

were also studied with a disc pupil function (2-D circular

low pass filter). The results are summarized in

Table 5.4.2.

One should probably realize that Poisson's summation

formula was a powerful tool in analyzing the polar

coordinate sampling effects. Because of the limited scope

of this dissertation, the subject was not pursued further.

However, it 1i3 not difficult from here on to arrive at a

sampling theorem corresponding to the polar format for- .4
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a counter-part to the sampling theorem in rectangular

coordinates. It is conceivable that the analytical tools

developed using Poisson's summation formula will find a

ýwhole host of applications in areas where polar format

:sampling is a fact of lie.

* Based on the background developed in earlier

chapters, three reconstruction methods are described in

Chapter 6, namely the Coherent processing method,

Incoherent processing method, and the Mixed processing

:method. An approximate coherent processing method was

developed with the potential of achieving high resolution

without the unduly increasing processing time and memory

requirement. It is not unreasonable in practice to

encounter sampling rates (especially aspect angle sampling

* rates) that do not satisfy the sufficient conditions

showed in Chapter 4. Therefore, a method to process

undersampled data was derived based on observations made

in Chapter 4. The method is simply to process the

portions of the data where sufficient sampling is
expected. The resolution of such a modified coherent

processing algorithm is also studied and summarized in

;Fig. 6.4.2

' •The incoherent processing method to reconstruct the

. target image without phase information in the range
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profiles was shown to be similar to tomographic

reconstruction systems. Therefore, tomographic

reconstruction techniques can be applied to reconstruct

the target from incoherent radar data. The mixed

processing technique processes segments of the radar data

coherently and then superimposes them incoherently.

Finally, digital implementation problems relating to the

above three reconstruction techniques are described.

Chapter 7 shows the results of applying the three

reconstruction techniques on two sets of experimental

data. The data is recorded off a static radar object

which has only rotational motion. Motion compensation was

therefore not necessary on the data. Results show that

even though the data was undersampled in aspect angle, the

modified coherent processing processing can provide

reconstructions with resolution performance better than he

other two reconstruction methods. The constant target

reflectivity function assumption was found to be not very

accurate and strong surges in backscattering showed up as

bright stripes on the coherently reconstructed images. In

this case, the modified coherent processing method was

found to suppress a lot of these artifacts created by the

non-constant behavior of the target reflectivity function.

Shadowing problems did appear to shade out most of the

"*other" half of the target when less than 360 aspect
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excursion was allowed on therotated target. In practice

since radar targets are usually observed at non-zero

elevation (or depression) angles, shadowing problems will
not become an important handicap.

As it was described earlier, one of the basic

assumptions on the data is that the data can be motion

compensated exactly. In practice this is not the case but
one can hope to approach that assumption as close as

possible. Towards this objective, an attempt is finally

made in Chapter 8 to understand some of the basic

components of the target motion that createDoppler phase

shifts in the radar data. A simple model for the target

motion was used, in which the target trajectory and the

radar beam line-of-sight was coplanar. Two simple

trajectories, namely the linear trajectory and the

circular trajectory were used and the behavior of their

translational Doppler was studied.

It is hoped that the work done in this dissertation

provides some insight into the problems of high resolution

radar imaging and other questions posed by the high

resolution requirement. Much more work has to be done

before one can establish the usefulness of the

principles derived in this dissertation in practical

applications,
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